Ferrotitanium is used as a deoxidizer and alloying agent during steelmaking process,which has a high demand for sulfur control.Sulfur was introduced from raw materials in the process of producing ferrotitanium by ther...Ferrotitanium is used as a deoxidizer and alloying agent during steelmaking process,which has a high demand for sulfur control.Sulfur was introduced from raw materials in the process of producing ferrotitanium by thermite method,where CaO was used as fluxing agent.At the same time,CaO has a great desulfurization capability.Effects of CaO addition on the distribution of sulfur in high titanium ferroalloy prepared by thermite method were studied in this work.The equilibrium diagram of Ti-AlFe-S system was calculated by FactSage 6.4 software package with FactPS and FTmisc database.The alloy and slag samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),inductively coupled plasma atomic emission spectrometer(ICP-AES),X-ray fluorescence(XRF)and high-frequency infrared ray carbon sulfur analyzer.The result indicates that the sulfur in the alloy firstly exists in the form of liquid FeS,thereafter TiS(s)and eventually Ti2 S(s)during cooling.The sulfur is mainly distributed in the alloy,and only a small amount of sulfur remains in the slag.Moreover,it is noted that the sulfur in the alloy does not distribute homogeneously,and it exists in the form of solid solution phase,(Ti,Al,Fe)S.S content in the slag,the sulfur capacity of the slag and the sulfur distribution ratio(LS)all increase with the increment of CaO addition,while S content in alloys decreases.展开更多
High ferrotitanium prepared directly by the thermite method has a disadvantageously high O content(≥10 wt%)because of the short slag-metal separation time.In this study,CaO and CaF2 are added to the melt to improve t...High ferrotitanium prepared directly by the thermite method has a disadvantageously high O content(≥10 wt%)because of the short slag-metal separation time.In this study,CaO and CaF2 are added to the melt to improve the basicity of the slag and melt separation under heat preservation is performed to strengthen slag-metal separation.The thermodynamics of the step-by-step reduction process of TiO2 in the Ti-Al-Fe-Si-O system whose composition is close to the alloy after melt separation were calculated.Samples of alloys and slags before and after melt separation were systematically analyzed.The result indicates that the reaction that TiO is reduced by Al to Ti is the limited step in the reduction process of TiO2.The O content of the alloys slightly decreases with temperature from 1873 to 2023 K,which agrees with the changes in the law of deoxidation limit.It is mainly attributed to the movement of chemical reactions in the alloy melt at different temperatures and slag-metal interfacial reaction.The addition of Al2 O3-CaO-CaF2 slag and high temperature promote the removal of Al2 O3 and titanium suboxides.The minimum contents of O and Al in the alloy reach 1.84 wt% and 3.26 wt%,respectively.展开更多
采用DSC法对铝热法制备钒铝合金反应动力学进行研究。运用Flynn-Wall-Ozawa法求得反应活化能,然后使用Kissinger法验证Flynn-Wall-Ozawa法求得反应活化能的可靠性,两种方法所求得活化能基本保持一致;取两种方法所求得平均活化能,代入Kis...采用DSC法对铝热法制备钒铝合金反应动力学进行研究。运用Flynn-Wall-Ozawa法求得反应活化能,然后使用Kissinger法验证Flynn-Wall-Ozawa法求得反应活化能的可靠性,两种方法所求得活化能基本保持一致;取两种方法所求得平均活化能,代入Kissinger-Crane法求解铝热反应其他动力学参数,建立反应动力学方程。结果表明,铝热法制备钒铝合金的平均表观活化能为386.5 k J/mol,反应级数为1.04,指前因子为3.361×10^(30)min^(-1)。展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51422403 and51504064)the Fundamental Research Funds for the Central Universities(No.N162505002)the National Basic Research Program of China(No.2013CB632606)
文摘Ferrotitanium is used as a deoxidizer and alloying agent during steelmaking process,which has a high demand for sulfur control.Sulfur was introduced from raw materials in the process of producing ferrotitanium by thermite method,where CaO was used as fluxing agent.At the same time,CaO has a great desulfurization capability.Effects of CaO addition on the distribution of sulfur in high titanium ferroalloy prepared by thermite method were studied in this work.The equilibrium diagram of Ti-AlFe-S system was calculated by FactSage 6.4 software package with FactPS and FTmisc database.The alloy and slag samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),inductively coupled plasma atomic emission spectrometer(ICP-AES),X-ray fluorescence(XRF)and high-frequency infrared ray carbon sulfur analyzer.The result indicates that the sulfur in the alloy firstly exists in the form of liquid FeS,thereafter TiS(s)and eventually Ti2 S(s)during cooling.The sulfur is mainly distributed in the alloy,and only a small amount of sulfur remains in the slag.Moreover,it is noted that the sulfur in the alloy does not distribute homogeneously,and it exists in the form of solid solution phase,(Ti,Al,Fe)S.S content in the slag,the sulfur capacity of the slag and the sulfur distribution ratio(LS)all increase with the increment of CaO addition,while S content in alloys decreases.
基金financially supported by the National Natural Science Foundation of China (Nos. 51422403, 51774078 and U1508217)the Fundamental Research Funds for the Central Universities (No. N162505002)
文摘High ferrotitanium prepared directly by the thermite method has a disadvantageously high O content(≥10 wt%)because of the short slag-metal separation time.In this study,CaO and CaF2 are added to the melt to improve the basicity of the slag and melt separation under heat preservation is performed to strengthen slag-metal separation.The thermodynamics of the step-by-step reduction process of TiO2 in the Ti-Al-Fe-Si-O system whose composition is close to the alloy after melt separation were calculated.Samples of alloys and slags before and after melt separation were systematically analyzed.The result indicates that the reaction that TiO is reduced by Al to Ti is the limited step in the reduction process of TiO2.The O content of the alloys slightly decreases with temperature from 1873 to 2023 K,which agrees with the changes in the law of deoxidation limit.It is mainly attributed to the movement of chemical reactions in the alloy melt at different temperatures and slag-metal interfacial reaction.The addition of Al2 O3-CaO-CaF2 slag and high temperature promote the removal of Al2 O3 and titanium suboxides.The minimum contents of O and Al in the alloy reach 1.84 wt% and 3.26 wt%,respectively.
文摘采用DSC法对铝热法制备钒铝合金反应动力学进行研究。运用Flynn-Wall-Ozawa法求得反应活化能,然后使用Kissinger法验证Flynn-Wall-Ozawa法求得反应活化能的可靠性,两种方法所求得活化能基本保持一致;取两种方法所求得平均活化能,代入Kissinger-Crane法求解铝热反应其他动力学参数,建立反应动力学方程。结果表明,铝热法制备钒铝合金的平均表观活化能为386.5 k J/mol,反应级数为1.04,指前因子为3.361×10^(30)min^(-1)。