K-Ar ages of the Mesozoic (92-100 Ma) Fuxin alkalic basalts (western Liaoning Province) and the Tertiary (23-45 Ma) Pingquan alkalic basalts (eastern Hebei Province), and the results of in situ zircon U-Pb dating, Hf ...K-Ar ages of the Mesozoic (92-100 Ma) Fuxin alkalic basalts (western Liaoning Province) and the Tertiary (23-45 Ma) Pingquan alkalic basalts (eastern Hebei Province), and the results of in situ zircon U-Pb dating, Hf isotope and the trace elements from three monzonite xenoliths carried in the alkalic basalts are reported. The crust-mantle interaction occurring in the Yanshan intracontinental orogenic belt is also discussed. Fuxin zircons show highly uniform U-Pb age ((1693) Ma). More than 95% Pingquan zircons display the age of (107?0) Ma except two are 2491 Ma and 513 Ma respectively. Zircons with the ages of (169?) Ma have eHf close to zero. eHf of the zircons with the ages of (10710) Ma are mainly at -11.5--16.3, showing the crustal derivation. Fuxin zircons contain low Nb, Ta, Sr, Th, U contents, low and narrow Hf model ages (0.87-1.00 Ga), which reflect that the source materials of the monzonite xenoliths are young to Pingquan (focus at (1.280.08) Ga). High contents of the incompatible elements, and wide range of Hf model ages (0.89-2.56 Ga) in Pingquan zircons suggest a more complex source and the highly crustal maturity in their petrogenesis. Comprehensive information including the published data indicates that J3-K1 is the key period of the deep processes and shallow tectonic reverse in the Yanliao area. However, the processes were highly heterogeneous in spatial and in temporal.展开更多
The Paleoproterozoie Birimian granitoids of the West African Craton (WAC) in the northwestern part of Ghana, have been studied for their zircon trace elements concentrations to infer the source characteristics, orig...The Paleoproterozoie Birimian granitoids of the West African Craton (WAC) in the northwestern part of Ghana, have been studied for their zircon trace elements concentrations to infer the source characteristics, origin, and magmatic evolution. The zircons in the granitoids have Th/U ratios ranging from 0.03 to 1.55, and display depleted light rare earth elements 0LREE) and enriched heavy rare earth elements (HREE) contents, characterized by pronounced positive to negative anomalies of Eu (Eu/Eu*=0.14-0.98 and 1.01-6.06, respectively) and Ce (Ce/Ce*=0.08-0.98 and 1.02-116, respectively), which may imply that they were derived from both magmatic and hydrothermal sources. The geochemical plots of U/Yb vs. Y and Hf, the positive correlation between Hf and the other high field strength elements 0tFSE) and high rare earth elements (REE) contents, with enrichment in Ce and depletion in Eu, indicate that the granitoids possibly formed from partial melting of the crust. The trace elements characteristics (i.e., wide range of Hf, Ce/Ce*, Th/U and Zr/Hf values) of the zircons suggest that crystallization of the magma occurred under variable oxidation states, which spanned over a longer period, implying that our data corroborate interpretations from studies of whole-rock geochemistry and geochronology on the granitoids of northwestern Ghana. This further indicates that the evolution of the Birimian granitoids in this part of the WAC occurred earlier than what had been reported in the literature.展开更多
The fate of different trace elements and radio nuclides in the new ZWILAG nuclear waste treatment plant (Switzerland) has been modelled, in order to predict and check the transport behaviour of the volatile species ...The fate of different trace elements and radio nuclides in the new ZWILAG nuclear waste treatment plant (Switzerland) has been modelled, in order to predict and check the transport behaviour of the volatile species and their distribution in the plant. Calculations show that for active waste from medicine, industry, research (MIR waste) only Zn and Cs have stable gaseous species at 1200℃. The investigations confirm the efficiency of the examined flue gas cleaning system.展开更多
Neutron activation analysis technique of the Gd2O2S:М scintillation ceramics was developed. The concentrations of 15 trace, minor and major elements (As, Ce, Co, Cr, Cs, Eu, Fe, La, Sc, Tb, Zn, Zr, Pr, Gd, Na) have b...Neutron activation analysis technique of the Gd2O2S:М scintillation ceramics was developed. The concentrations of 15 trace, minor and major elements (As, Ce, Co, Cr, Cs, Eu, Fe, La, Sc, Tb, Zn, Zr, Pr, Gd, Na) have been measured with the instrumental neutron activation analysis of the Gd2O2S:Pr sample. The concentrations range of the determined elements is from 3 × 10-8 to 2.0% in mass. The determination limit of the elements was calculated to be (0.6 - 1.3 × 10-8% in mass).展开更多
文摘K-Ar ages of the Mesozoic (92-100 Ma) Fuxin alkalic basalts (western Liaoning Province) and the Tertiary (23-45 Ma) Pingquan alkalic basalts (eastern Hebei Province), and the results of in situ zircon U-Pb dating, Hf isotope and the trace elements from three monzonite xenoliths carried in the alkalic basalts are reported. The crust-mantle interaction occurring in the Yanshan intracontinental orogenic belt is also discussed. Fuxin zircons show highly uniform U-Pb age ((1693) Ma). More than 95% Pingquan zircons display the age of (107?0) Ma except two are 2491 Ma and 513 Ma respectively. Zircons with the ages of (169?) Ma have eHf close to zero. eHf of the zircons with the ages of (10710) Ma are mainly at -11.5--16.3, showing the crustal derivation. Fuxin zircons contain low Nb, Ta, Sr, Th, U contents, low and narrow Hf model ages (0.87-1.00 Ga), which reflect that the source materials of the monzonite xenoliths are young to Pingquan (focus at (1.280.08) Ga). High contents of the incompatible elements, and wide range of Hf model ages (0.89-2.56 Ga) in Pingquan zircons suggest a more complex source and the highly crustal maturity in their petrogenesis. Comprehensive information including the published data indicates that J3-K1 is the key period of the deep processes and shallow tectonic reverse in the Yanliao area. However, the processes were highly heterogeneous in spatial and in temporal.
基金funded by the National Natural Science Foundation of China (No. 41522203)the Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 2016067)
文摘The Paleoproterozoie Birimian granitoids of the West African Craton (WAC) in the northwestern part of Ghana, have been studied for their zircon trace elements concentrations to infer the source characteristics, origin, and magmatic evolution. The zircons in the granitoids have Th/U ratios ranging from 0.03 to 1.55, and display depleted light rare earth elements 0LREE) and enriched heavy rare earth elements (HREE) contents, characterized by pronounced positive to negative anomalies of Eu (Eu/Eu*=0.14-0.98 and 1.01-6.06, respectively) and Ce (Ce/Ce*=0.08-0.98 and 1.02-116, respectively), which may imply that they were derived from both magmatic and hydrothermal sources. The geochemical plots of U/Yb vs. Y and Hf, the positive correlation between Hf and the other high field strength elements 0tFSE) and high rare earth elements (REE) contents, with enrichment in Ce and depletion in Eu, indicate that the granitoids possibly formed from partial melting of the crust. The trace elements characteristics (i.e., wide range of Hf, Ce/Ce*, Th/U and Zr/Hf values) of the zircons suggest that crystallization of the magma occurred under variable oxidation states, which spanned over a longer period, implying that our data corroborate interpretations from studies of whole-rock geochemistry and geochronology on the granitoids of northwestern Ghana. This further indicates that the evolution of the Birimian granitoids in this part of the WAC occurred earlier than what had been reported in the literature.
文摘The fate of different trace elements and radio nuclides in the new ZWILAG nuclear waste treatment plant (Switzerland) has been modelled, in order to predict and check the transport behaviour of the volatile species and their distribution in the plant. Calculations show that for active waste from medicine, industry, research (MIR waste) only Zn and Cs have stable gaseous species at 1200℃. The investigations confirm the efficiency of the examined flue gas cleaning system.
文摘Neutron activation analysis technique of the Gd2O2S:М scintillation ceramics was developed. The concentrations of 15 trace, minor and major elements (As, Ce, Co, Cr, Cs, Eu, Fe, La, Sc, Tb, Zn, Zr, Pr, Gd, Na) have been measured with the instrumental neutron activation analysis of the Gd2O2S:Pr sample. The concentrations range of the determined elements is from 3 × 10-8 to 2.0% in mass. The determination limit of the elements was calculated to be (0.6 - 1.3 × 10-8% in mass).