Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we p...Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise.展开更多
Thermal management aims at making full use of energy resources available in the space station to reduce energy consumption, waste heat rejection and the weight of the station. It is an extension of the thermal control...Thermal management aims at making full use of energy resources available in the space station to reduce energy consumption, waste heat rejection and the weight of the station. It is an extension of the thermal control. This discussion introduces the concept and development of thermal management, presents the aspects of thermal management and further extends its application to subsystems of the space station.展开更多
We analyzed the characteristics of subway station environment and the change of thermal comfort for passengers when they are in and out of the station. The dynamic thermal comfort evaluation model RWI(relative warmth ...We analyzed the characteristics of subway station environment and the change of thermal comfort for passengers when they are in and out of the station. The dynamic thermal comfort evaluation model RWI(relative warmth index) and HDR(heat deficit rate) were built on the distinguishing features of public area in subway station. Taking one representative subway station in Nanjing as the research object, the thermal comfort conditions in different seasons and different parts were studied by field tests, questionnaires and model-evaluating. The calculated RWI shows that although the thermal comfort in Nanjing metro is relatively acceptable, ideal thermal comfort has not been achieved. And it is found that associated with predicted mean vote(PMV), using RWI can evaluate the thermal comfort more precisely.展开更多
An analysis for a conceptual design of a thermal power plant (with a power capacity of 1 GW) is provided. This power plant can help in meeting the expected increase in the electric demand for Oman’s dominant power sy...An analysis for a conceptual design of a thermal power plant (with a power capacity of 1 GW) is provided. This power plant can help in meeting the expected increase in the electric demand for Oman’s dominant power system (2.4 GW between 2018 and 2025). A necessary fluid mass flow rate of 834.1 kg/s was predicted. The overall energy conversion efficiency (output useful electricity divided by input heat) was estimated to be 34.7%. The needed thermal energy is not restricted to a specific source, and solar heating is an option for supplying the needed heat. The power plant design is based on using a steam-turbine section, which may be composed of a single large steam turbine having a mechanical power output of 1115 MW;or composed of a group of smaller steam turbines. The analysis is based on applying energy balance equations under certain assumptions (such as neglecting changes in potential energy). The thermal analysis was aided by web-based tool for calculating needed properties of the working medium, which is water, at different stages in the power plant.展开更多
基金funded by Major Science and Technology Projects in Gansu Province(19ZD2GA003).
文摘Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise.
文摘Thermal management aims at making full use of energy resources available in the space station to reduce energy consumption, waste heat rejection and the weight of the station. It is an extension of the thermal control. This discussion introduces the concept and development of thermal management, presents the aspects of thermal management and further extends its application to subsystems of the space station.
文摘We analyzed the characteristics of subway station environment and the change of thermal comfort for passengers when they are in and out of the station. The dynamic thermal comfort evaluation model RWI(relative warmth index) and HDR(heat deficit rate) were built on the distinguishing features of public area in subway station. Taking one representative subway station in Nanjing as the research object, the thermal comfort conditions in different seasons and different parts were studied by field tests, questionnaires and model-evaluating. The calculated RWI shows that although the thermal comfort in Nanjing metro is relatively acceptable, ideal thermal comfort has not been achieved. And it is found that associated with predicted mean vote(PMV), using RWI can evaluate the thermal comfort more precisely.
文摘An analysis for a conceptual design of a thermal power plant (with a power capacity of 1 GW) is provided. This power plant can help in meeting the expected increase in the electric demand for Oman’s dominant power system (2.4 GW between 2018 and 2025). A necessary fluid mass flow rate of 834.1 kg/s was predicted. The overall energy conversion efficiency (output useful electricity divided by input heat) was estimated to be 34.7%. The needed thermal energy is not restricted to a specific source, and solar heating is an option for supplying the needed heat. The power plant design is based on using a steam-turbine section, which may be composed of a single large steam turbine having a mechanical power output of 1115 MW;or composed of a group of smaller steam turbines. The analysis is based on applying energy balance equations under certain assumptions (such as neglecting changes in potential energy). The thermal analysis was aided by web-based tool for calculating needed properties of the working medium, which is water, at different stages in the power plant.