以锂离子电池热失控为核心的文献是目前新能源汽车发展领域的研究热点。以中国知网(CNKI)数据库及Web of Science核心集数据库中收录的相关文献为研究对象,运用CiteSpace软件和科学知识图谱,着重从领域研究进展、统计分析及前沿热点等...以锂离子电池热失控为核心的文献是目前新能源汽车发展领域的研究热点。以中国知网(CNKI)数据库及Web of Science核心集数据库中收录的相关文献为研究对象,运用CiteSpace软件和科学知识图谱,着重从领域研究进展、统计分析及前沿热点等多个角度进行探究。锂离子电池热失控的研究虽已取得大量的理论和实验成果,但安全性研究仍需向精确化、可靠化和智能化不断完善。展开更多
Thermal runaway(TR)of lithium-ion(Li-ion)batteries(LIBs)involves multiple forms of hazards,such as gas venting/jetting,fire,or even explosion.Explosion,as the most extreme case,is caused by the generated flammable gas...Thermal runaway(TR)of lithium-ion(Li-ion)batteries(LIBs)involves multiple forms of hazards,such as gas venting/jetting,fire,or even explosion.Explosion,as the most extreme case,is caused by the generated flammable gases,and a deflagration to detonation transition(DDT)may occur in this process.Here,overheat-to-TR tests and the corresponding outgas-induced explosion tests were conducted on 42 Ah Li-ion cells with Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O2cathode.The sum of CO_(2),H_(2),C_(2)H_(4),CO,and CH4accounted for more than 90%of the gases.Lower/upper explosion limits(LEL/UEL),laminar flame speed,and ideal stable detonation pressure were calculated to interpret the explosion characteristics and boundary.It turned out that shockwave was easily to be compressed and accelerated under higher state of charge(SOC)conditions.Thus,Li-ion cells explosion may evolve into unstable detonation in encapsulated battery pack and its evolution mechanism was explained,which provides a new idea for explosion-proof design of LIBs system.Additionally,a comprehensive assessment method was developed to intuitively characterize TR hazards.Severity of explosion presented an upward trend with the increase of SOC while the sensitivity was not the same.This study provides a further anatomy of TR,which is instructive to the safety of power battery systems.展开更多
文摘以锂离子电池热失控为核心的文献是目前新能源汽车发展领域的研究热点。以中国知网(CNKI)数据库及Web of Science核心集数据库中收录的相关文献为研究对象,运用CiteSpace软件和科学知识图谱,着重从领域研究进展、统计分析及前沿热点等多个角度进行探究。锂离子电池热失控的研究虽已取得大量的理论和实验成果,但安全性研究仍需向精确化、可靠化和智能化不断完善。
基金sponsored by the China Postdoctoral Science Foundation(China National Postdoctoral Program for Innovative Talents,BX20210362022M710383)the National Natural Science Foundation of China(52072040,U21A20170)。
文摘Thermal runaway(TR)of lithium-ion(Li-ion)batteries(LIBs)involves multiple forms of hazards,such as gas venting/jetting,fire,or even explosion.Explosion,as the most extreme case,is caused by the generated flammable gases,and a deflagration to detonation transition(DDT)may occur in this process.Here,overheat-to-TR tests and the corresponding outgas-induced explosion tests were conducted on 42 Ah Li-ion cells with Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O2cathode.The sum of CO_(2),H_(2),C_(2)H_(4),CO,and CH4accounted for more than 90%of the gases.Lower/upper explosion limits(LEL/UEL),laminar flame speed,and ideal stable detonation pressure were calculated to interpret the explosion characteristics and boundary.It turned out that shockwave was easily to be compressed and accelerated under higher state of charge(SOC)conditions.Thus,Li-ion cells explosion may evolve into unstable detonation in encapsulated battery pack and its evolution mechanism was explained,which provides a new idea for explosion-proof design of LIBs system.Additionally,a comprehensive assessment method was developed to intuitively characterize TR hazards.Severity of explosion presented an upward trend with the increase of SOC while the sensitivity was not the same.This study provides a further anatomy of TR,which is instructive to the safety of power battery systems.