In this paper,a high-yield Hf-modified SiHfBOC ceramic precursor was developed,and a high-pressure assisted impregnation pyrolysis method was proposed to achieve the preparation of 3D PyC–Cf/SiHfBOC composites.This h...In this paper,a high-yield Hf-modified SiHfBOC ceramic precursor was developed,and a high-pressure assisted impregnation pyrolysis method was proposed to achieve the preparation of 3D PyC–Cf/SiHfBOC composites.This high-pressure assisted impregnation method significantly improves impregnation filling effect of the precursor in and between fiber bundles compared to dozens of traditional impregnation cycles.After undergoing just 9 precursor infiltration pyrolysis(PIP)cycles,the composites achieved relative density of approximately 90%and density of 1.64 g/cm^(3).The critical temperature difference of the 3D PyC–Cf/SiHfBOC composites after the shock of room temperature(RT)–1000℃is as high as 650℃,which is twice that of traditional ceramic materials,showing good thermal shock resistance.Under the effect of Hf modification,a dense HfO_(2)–SiO_(2)oxide layer(thickness of 93μm)was formed in situ on the surface of the 3D PyC–Cf/SiHfBOC composites,effectively preventing further erosion of the composite matrix by high-temperature oxidation gas.Even in the ultra-high-temperature oxygen-containing environment at 1800℃,it still exhibits an excellent non-ablative result(with a linear ablation rate of 0.83×10^(−4)mm/s).This work not only enriches the basic research on lightweight ultra-high-temperature ceramic composites converted from Hf ceramic precursors,but also provides strong technical support for their applications in ultra-high-temperature non-ablative thermal protection materials for high-speed aircraft.展开更多
Due to the rigid Si-O-Si backbone,silicone rubber(SR)have a widespread application in extreme environment such as high temperature and high-level radiation.However,the radiation stability of SR still does not meet the...Due to the rigid Si-O-Si backbone,silicone rubber(SR)have a widespread application in extreme environment such as high temperature and high-level radiation.However,the radiation stability of SR still does not meet the practical needs in special radiation environments.Herein we prepared epoxy POSS(e POSS)/SR nanocomposites with excellent thermal stability and radiation resistance.As a physical crosslinking point in the SR,addition of small amount of ePOSS not only enhanced the mechanical properties of the matrix,but also improved its thermal stability greatly due to their good compatibility.e POSS/SR had higher radiation stability in air than SR owing to the inhibition of radiation oxidation by ePOSS,and the yield of main gaseous radiolysis products(CH_(4),H_(2),CO and CO_(2))of SR and ePOSS/SR nanocomposites was determined.By analyzing the changes of chemical structure,thermal properties and mechanical properties of the ePOSS/SR nanocomposite,combined with the characteristics of gas products afterγ-irradiation,the radiation induced crosslinking and degradation mechanism of the nanocomposites was proposed comprehensively.展开更多
基金the National Natural Science Foundation of China(No.52032003)National Natural Science Foundation of China(Nos.51972082,52102093,and 52172041)+1 种基金Postdoctoral Research Foundation of China(No.2021M690817)the Science Foundation of National Key Laboratoryof Science and Technology on Advanced Composites in Special Environments.
文摘In this paper,a high-yield Hf-modified SiHfBOC ceramic precursor was developed,and a high-pressure assisted impregnation pyrolysis method was proposed to achieve the preparation of 3D PyC–Cf/SiHfBOC composites.This high-pressure assisted impregnation method significantly improves impregnation filling effect of the precursor in and between fiber bundles compared to dozens of traditional impregnation cycles.After undergoing just 9 precursor infiltration pyrolysis(PIP)cycles,the composites achieved relative density of approximately 90%and density of 1.64 g/cm^(3).The critical temperature difference of the 3D PyC–Cf/SiHfBOC composites after the shock of room temperature(RT)–1000℃is as high as 650℃,which is twice that of traditional ceramic materials,showing good thermal shock resistance.Under the effect of Hf modification,a dense HfO_(2)–SiO_(2)oxide layer(thickness of 93μm)was formed in situ on the surface of the 3D PyC–Cf/SiHfBOC composites,effectively preventing further erosion of the composite matrix by high-temperature oxidation gas.Even in the ultra-high-temperature oxygen-containing environment at 1800℃,it still exhibits an excellent non-ablative result(with a linear ablation rate of 0.83×10^(−4)mm/s).This work not only enriches the basic research on lightweight ultra-high-temperature ceramic composites converted from Hf ceramic precursors,but also provides strong technical support for their applications in ultra-high-temperature non-ablative thermal protection materials for high-speed aircraft.
基金financially supported by the Science Challenge Project(No.TZ2018004)the National Natural Science Foundation of China(NSFC,Nos.11575009 and 12075010)。
文摘Due to the rigid Si-O-Si backbone,silicone rubber(SR)have a widespread application in extreme environment such as high temperature and high-level radiation.However,the radiation stability of SR still does not meet the practical needs in special radiation environments.Herein we prepared epoxy POSS(e POSS)/SR nanocomposites with excellent thermal stability and radiation resistance.As a physical crosslinking point in the SR,addition of small amount of ePOSS not only enhanced the mechanical properties of the matrix,but also improved its thermal stability greatly due to their good compatibility.e POSS/SR had higher radiation stability in air than SR owing to the inhibition of radiation oxidation by ePOSS,and the yield of main gaseous radiolysis products(CH_(4),H_(2),CO and CO_(2))of SR and ePOSS/SR nanocomposites was determined.By analyzing the changes of chemical structure,thermal properties and mechanical properties of the ePOSS/SR nanocomposite,combined with the characteristics of gas products afterγ-irradiation,the radiation induced crosslinking and degradation mechanism of the nanocomposites was proposed comprehensively.