The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in...The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.展开更多
为了提高数控机床热误差模型的精度与泛化性,提出了基于注意力机制的长短时记忆卷积神经网络(Long short term memory convolutional neural network based on attention mechanism,AM-CNN-LSTM)热误差模型。利用卷积神经网络提取高维...为了提高数控机床热误差模型的精度与泛化性,提出了基于注意力机制的长短时记忆卷积神经网络(Long short term memory convolutional neural network based on attention mechanism,AM-CNN-LSTM)热误差模型。利用卷积神经网络提取高维数据空间状态特征的能力和长短时记忆网络提取长时间序列状态特征的能力,构建具有2个支路的热误差模型,分别提取特征后输入到注意力机制中进行特征重要性重构,建立原始数据与热误差的特征映射,最后通过全连接层进行热误差预测。采用G460L型数控机床进行实验数据采集,将不同季节采集到的温度数据和热误差作为模型输入,采用循环学习率与正则化优化方法对模型进行训练。与LSTM、ConvLSTM和CNN-LSTM热误差模型对比,结果表明,AM-CNN-LSTM模型对特征还原能力最强,残差波动范围最小,其残差范围较最大值下降62.09%,模型预测精度在2.4μm以内。展开更多
文摘The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.
文摘为了提高数控机床热误差模型的精度与泛化性,提出了基于注意力机制的长短时记忆卷积神经网络(Long short term memory convolutional neural network based on attention mechanism,AM-CNN-LSTM)热误差模型。利用卷积神经网络提取高维数据空间状态特征的能力和长短时记忆网络提取长时间序列状态特征的能力,构建具有2个支路的热误差模型,分别提取特征后输入到注意力机制中进行特征重要性重构,建立原始数据与热误差的特征映射,最后通过全连接层进行热误差预测。采用G460L型数控机床进行实验数据采集,将不同季节采集到的温度数据和热误差作为模型输入,采用循环学习率与正则化优化方法对模型进行训练。与LSTM、ConvLSTM和CNN-LSTM热误差模型对比,结果表明,AM-CNN-LSTM模型对特征还原能力最强,残差波动范围最小,其残差范围较最大值下降62.09%,模型预测精度在2.4μm以内。