The Qiangtang basin is located in the central Tibetan Plateau. This basin has an important structural position, and further study of its tectonic and thermal histories has great significance for understanding the evol...The Qiangtang basin is located in the central Tibetan Plateau. This basin has an important structural position, and further study of its tectonic and thermal histories has great significance for understanding the evolution of the Tibetan Plateau and the hydrocarbon potential of marine carbonates in the basin. This study focuses on low temperature thermochronology and in particular conducted apatite fission track analysis. Under constraints provided by the geological background, the thermal history in different tectonic units is characterized by the degree of annealing of samples, and the timing of major (uplift-erosion related) cooling episodes is inferred. The cooling history in the Qiangtang basin can be divided into two distinct episodes. The first stage is mainly from the late Early Cretaceous to the Late Cretaceous (69.8 Ma to 108.7 Ma), while the second is mainly from the Middle- Late Eocene to the late Miocene (10.3 Ma to 44.4 Ma). The first cooling episode records the uplift of strata in the central Qiangtang basin caused by continued convergent extrusion after the Bangong- Nujiang ocean closed. The second episode can be further divided into three periods, which are respectively 10.3 Ma, 22.6-26.1 Ma and 30.8-44.4 Ma. The late Oligocene-early Miocene (22.6-26.1 Ma) is the main cooling period. The distribution and times of the earlier uplift-related cooling show that the effect of extrusion after the collision between Eurasian plate and India plate obviously influenced the Qiangtang basin at 44.4 Ma. The Qiangtang basin underwent compression and started to be uplifted from the middle-late Eocene to the early Oligocene (45.0-30.8 Ma). Subsequently, a large-scale and intensive uplift process occurred during the late Oligocene to early Miocene (26.1-22.6 Ma) and the basin continued to undergo compression and uplift up to the late Miocene (10.3 Ma). Thus, uplift-erosion in the Qiangtang basin was intensive from 44.5 Ma to about 10 Ma. The timing of cooling in the second episode show展开更多
Two-dimensional(2D)carbon nitride sheets(CNs)with atomically thin structures are regarded as one of the most promising materials for solar energy conversion.However,due to their substantially enlarged bandgap caused b...Two-dimensional(2D)carbon nitride sheets(CNs)with atomically thin structures are regarded as one of the most promising materials for solar energy conversion.However,due to their substantially enlarged bandgap caused by the strong quantum size effect and their incomplete polymerisation with a large number of non-condensed surface amino groups,the practical applicability of CNs in photocatalysis is limited.In this study,CNs with broad visible-light absorption were synthesised using a 5-min fast thermal annealing.The removal of uncondensed amine groups reduces the bandgap of CNs from 3.06 eV to 2.60 eV,increasing their absorption of visible light.Interestingly,the CNs were distorted after annealing,which can differentiate the spatial positions of electrons and holes,enhancing the visible-light absorption efficiency.As a result,when exposed to visible light,the photocatalytic hydrogen production activity of atomically thin 2D CNs rose by 8.38 times.This research presents a dependable and speedy method for creating highly effective visible-light photocatalysts with narrowed bandgaps and improved visible-light absorption.展开更多
为了分析Al-Y-Fe三元合金的玻璃形成能力和热稳定性,采用熔体急冷法制备了Al(100-2x)YxFex(其中x=3,4,5,6,7,8,9)、Al89Y5Fe6、Al88Y5Fe7和Al87Y5Fe8合金条带.利用x-射线衍射(XRD)及透射电子显微镜(TEM)表征了急冷态和部分晶化后条带的...为了分析Al-Y-Fe三元合金的玻璃形成能力和热稳定性,采用熔体急冷法制备了Al(100-2x)YxFex(其中x=3,4,5,6,7,8,9)、Al89Y5Fe6、Al88Y5Fe7和Al87Y5Fe8合金条带.利用x-射线衍射(XRD)及透射电子显微镜(TEM)表征了急冷态和部分晶化后条带的结构,运用示差扫描量热仪(DSC)分析了合金的玻璃转变和晶化行为.结果表明,Al88Y6Fe6、Al84Y7Fe7、Al89Y5Fe6和Al88Y5Fe7可以形成完全非晶合金;Al88Y5Fe7非晶合金280℃等温退火30 min析出纳米尺寸Al晶体,370℃等温退火30 min Al晶体发生进一步长大并有金属间化合物析出.展开更多
Electrocatalysts for oxygen reduction reactions(ORR)and oxygen evolution reactions(OER)are highly crucial and challenging toward the energy storage and conversion technologies such as fuel cells,metal-air batteries an...Electrocatalysts for oxygen reduction reactions(ORR)and oxygen evolution reactions(OER)are highly crucial and challenging toward the energy storage and conversion technologies such as fuel cells,metal-air batteries and water electrolysis.To replace noble-metal based catalysts and boost catalytic performance of carbon-based materials,we initially develop the nickel,phospho rus,sulfur and nitrogen co-modified mesoporous carbon(NiPS_(3)@NMC)as a bifunctional oxygen electrocatalyst.The perfo rmance for ORR(half-wave potential at 0.90 V)and OER(10 mA cm^(-2)at 1.48 V)surpasses those of Pt/C coupled with IrO_(2)catalysts and most of the non-precious metal based bifunctional electrocatalysts reported in related literature.Moreover,the electrochemical durability is also confirmed by accelerated durability tests(ADTs)and long-term chronoamperometry(CA)tests.We demonstrated that the interfacial effect between NiPS_(3)quantum sheets(QS s)and NMC substrates by thermal activation contributed to the enhanced oxygen electrode bifunctionality with more active sites,due to the electrons-donating from nickel,phosphorus and sulfur elements and relatively enriched pyridinic type N.Such excellent overall performance highlights the potential application of NiPS3 QSs and NMC composites as the materials on energy conversion and storage.展开更多
High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current puri...High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current purification process is mainly based on the zone/electrolytic refining or anion exchange, however, which excessively relies on specific integrated equipment with ultra-high vacuum or chemical solution environment, and is also bothered by external contaminants and energy consumption. Here we report a simple approach to purify the Cu foils from 99.9%(3N) to 99.99%(4N) by a temperature-gradient thermal annealing technique, accompanied by the kinetic evolution of single crystallization of Cu.The success of purification mainly relies on(i) the segregation of elements with low effective distribution coefficient driven by grain-boundary movements and(ii) the high-temperature evaporation of elements with high saturated vapor pressure.The purified Cu foils display higher flexibility(elongation of 70%) and electrical conductivity(104% IACS) than that of the original commercial rolled Cu foils(elongation of 10%, electrical conductivity of ~ 100% IACS). Our results provide an effective strategy to optimize the as-produced metal medium, and therefore will facilitate the potential applications of Cu foils in precision electronic products and high-frequency printed circuit boards.展开更多
基金the National Natural Science Foundation of China (No.41372128)the State Key Laboratory of Continental Dynamics project in Northwest University (No.BJ08133-1)
文摘The Qiangtang basin is located in the central Tibetan Plateau. This basin has an important structural position, and further study of its tectonic and thermal histories has great significance for understanding the evolution of the Tibetan Plateau and the hydrocarbon potential of marine carbonates in the basin. This study focuses on low temperature thermochronology and in particular conducted apatite fission track analysis. Under constraints provided by the geological background, the thermal history in different tectonic units is characterized by the degree of annealing of samples, and the timing of major (uplift-erosion related) cooling episodes is inferred. The cooling history in the Qiangtang basin can be divided into two distinct episodes. The first stage is mainly from the late Early Cretaceous to the Late Cretaceous (69.8 Ma to 108.7 Ma), while the second is mainly from the Middle- Late Eocene to the late Miocene (10.3 Ma to 44.4 Ma). The first cooling episode records the uplift of strata in the central Qiangtang basin caused by continued convergent extrusion after the Bangong- Nujiang ocean closed. The second episode can be further divided into three periods, which are respectively 10.3 Ma, 22.6-26.1 Ma and 30.8-44.4 Ma. The late Oligocene-early Miocene (22.6-26.1 Ma) is the main cooling period. The distribution and times of the earlier uplift-related cooling show that the effect of extrusion after the collision between Eurasian plate and India plate obviously influenced the Qiangtang basin at 44.4 Ma. The Qiangtang basin underwent compression and started to be uplifted from the middle-late Eocene to the early Oligocene (45.0-30.8 Ma). Subsequently, a large-scale and intensive uplift process occurred during the late Oligocene to early Miocene (26.1-22.6 Ma) and the basin continued to undergo compression and uplift up to the late Miocene (10.3 Ma). Thus, uplift-erosion in the Qiangtang basin was intensive from 44.5 Ma to about 10 Ma. The timing of cooling in the second episode show
基金supported by the National Natural Science Foundation of China(Nos.12104352 and 12204294)Fundamental Research Funds for the Central Universities(Nos.XJS_(2)12208 and 2020BJ-56)+1 种基金Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(No.2022-K67)the Natural Science Foundation of Shaanxi Province(Nos.2019JCW-17 and 2020JCW-15).
文摘Two-dimensional(2D)carbon nitride sheets(CNs)with atomically thin structures are regarded as one of the most promising materials for solar energy conversion.However,due to their substantially enlarged bandgap caused by the strong quantum size effect and their incomplete polymerisation with a large number of non-condensed surface amino groups,the practical applicability of CNs in photocatalysis is limited.In this study,CNs with broad visible-light absorption were synthesised using a 5-min fast thermal annealing.The removal of uncondensed amine groups reduces the bandgap of CNs from 3.06 eV to 2.60 eV,increasing their absorption of visible light.Interestingly,the CNs were distorted after annealing,which can differentiate the spatial positions of electrons and holes,enhancing the visible-light absorption efficiency.As a result,when exposed to visible light,the photocatalytic hydrogen production activity of atomically thin 2D CNs rose by 8.38 times.This research presents a dependable and speedy method for creating highly effective visible-light photocatalysts with narrowed bandgaps and improved visible-light absorption.
文摘为了分析Al-Y-Fe三元合金的玻璃形成能力和热稳定性,采用熔体急冷法制备了Al(100-2x)YxFex(其中x=3,4,5,6,7,8,9)、Al89Y5Fe6、Al88Y5Fe7和Al87Y5Fe8合金条带.利用x-射线衍射(XRD)及透射电子显微镜(TEM)表征了急冷态和部分晶化后条带的结构,运用示差扫描量热仪(DSC)分析了合金的玻璃转变和晶化行为.结果表明,Al88Y6Fe6、Al84Y7Fe7、Al89Y5Fe6和Al88Y5Fe7可以形成完全非晶合金;Al88Y5Fe7非晶合金280℃等温退火30 min析出纳米尺寸Al晶体,370℃等温退火30 min Al晶体发生进一步长大并有金属间化合物析出.
基金supported financially by the National Natural Science Foundation of China(Nos.51902027,61674019,51976143,61874014,61874013 and 61974011)the National Basic Research of China(No.2015CB932500)+1 种基金the Fundamental Research Funds for the Central Universities(No.2019RC20)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications,P.R.China)。
文摘Electrocatalysts for oxygen reduction reactions(ORR)and oxygen evolution reactions(OER)are highly crucial and challenging toward the energy storage and conversion technologies such as fuel cells,metal-air batteries and water electrolysis.To replace noble-metal based catalysts and boost catalytic performance of carbon-based materials,we initially develop the nickel,phospho rus,sulfur and nitrogen co-modified mesoporous carbon(NiPS_(3)@NMC)as a bifunctional oxygen electrocatalyst.The perfo rmance for ORR(half-wave potential at 0.90 V)and OER(10 mA cm^(-2)at 1.48 V)surpasses those of Pt/C coupled with IrO_(2)catalysts and most of the non-precious metal based bifunctional electrocatalysts reported in related literature.Moreover,the electrochemical durability is also confirmed by accelerated durability tests(ADTs)and long-term chronoamperometry(CA)tests.We demonstrated that the interfacial effect between NiPS_(3)quantum sheets(QS s)and NMC substrates by thermal activation contributed to the enhanced oxygen electrode bifunctionality with more active sites,due to the electrons-donating from nickel,phosphorus and sulfur elements and relatively enriched pyridinic type N.Such excellent overall performance highlights the potential application of NiPS3 QSs and NMC composites as the materials on energy conversion and storage.
基金Project supported by the Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant Nos.2019A1515110302 and 2022A1515140003)the Key Research and Development Program of Guangdong Province,China(Grant Nos.2020B010189001,2021B0301030002,2019B010931001,and 2018B030327001)+5 种基金the National Natural Science Foundation of China(Grant Nos.52172035,52025023,52322205,51991342,52021006,51991344,52100115,11888101,92163206,12104018,and 12274456)the National Key Research and Development Program of China(Grant Nos.2021YFB3200303,2022YFA1405600,2018YFA0703700,2021YFA1400201,and 2021YFA1400502)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)the Pearl River Talent Recruitment Program of Guangdong Province,China(Grant No.2019ZT08C321)China Postdoctoral Science Foundation(Grant Nos.2020T130022 and 2020M680178)the Science and Technology Plan Project of Liaoning Province,China(Grant No.2021JH2/10100012).
文摘High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current purification process is mainly based on the zone/electrolytic refining or anion exchange, however, which excessively relies on specific integrated equipment with ultra-high vacuum or chemical solution environment, and is also bothered by external contaminants and energy consumption. Here we report a simple approach to purify the Cu foils from 99.9%(3N) to 99.99%(4N) by a temperature-gradient thermal annealing technique, accompanied by the kinetic evolution of single crystallization of Cu.The success of purification mainly relies on(i) the segregation of elements with low effective distribution coefficient driven by grain-boundary movements and(ii) the high-temperature evaporation of elements with high saturated vapor pressure.The purified Cu foils display higher flexibility(elongation of 70%) and electrical conductivity(104% IACS) than that of the original commercial rolled Cu foils(elongation of 10%, electrical conductivity of ~ 100% IACS). Our results provide an effective strategy to optimize the as-produced metal medium, and therefore will facilitate the potential applications of Cu foils in precision electronic products and high-frequency printed circuit boards.