In the past decade,boron neutron capture therapy utilizing an accelerator-based neutron source(ABNS)designed primarily for producing epithermal neutrons has been implemented in the treatment of brain tumors and other ...In the past decade,boron neutron capture therapy utilizing an accelerator-based neutron source(ABNS)designed primarily for producing epithermal neutrons has been implemented in the treatment of brain tumors and other cancers.The specifications for designing an epithermal beam are primarily based on the IAEA-TECODC-1223 report,issued in 2001 for reactor neutron sources.Based on this report,the latest perspectives and clinical requirements,we designed an ABNS capable of adjusting the average neutron beam energy.The design was based on a 2.8 MeV,20 mA proton beam bombarding a lithium target to produce neutrons that were subsequently moderated and tuned through a tunable beam shaping assembly(BSA)which can modify the thicknesses and materials of the coin-shaped moderators,back reflectors,filters,and collimators.The simulation results demonstrated that epithermal neutron beams for deep seated tumor treatment,which were generated by utilizing magnesium fluoride with lengths ranging between 28 and 36 cm as the moderator,possessed a treatment depth of 5.6 cm although the neutron flux peak shifts from 4.5 to 1.0 keV.When utilizing a thinner moderator,a less accelerated beam power can meet the treatment requirements.However,higher powers reduced the treatment time.In contrast,employing a thick moderator can reduce the skin dose.In scenarios that required relatively low energy neutron beams,the removal of the thermal neutron filter can raise the thermal neutron flux at the beam port.And the depth of the dose rate peak could be adjusted between 0.25 and 2.20 cm by combining magnesium fluoride and polyethylene coins of different thicknesses.Hence,this device has a better adaptability for the treatment of superficial tumors.Overall,the tunable BSA provides greater flexibility for clinical treatment than common BSA designs that can only adjust the port size.展开更多
Boron neutron capture therapy (BNCT) is based on the incorporation of boron-containing drugs to cancer cells and the nuclear reaction of 10B atoms by thermal neutron irradiation results in tumor degeneration. For the ...Boron neutron capture therapy (BNCT) is based on the incorporation of boron-containing drugs to cancer cells and the nuclear reaction of 10B atoms by thermal neutron irradiation results in tumor degeneration. For the development of this therapy, currently, long time and high cost consuming experiments using many animals are required. In this study, we constructed a new in vitro evaluation system for BNCT by combination of an artificial tumor tissue model, comprised of normal human dermal-derived fibroblast (NHDF) and human pancreatic cancer cell line BxPC3, and the optical plastic material CR-39 as a solid state nuclear track detector. Administration of boronophenylalanine (10BPA) as a boron-containing drug and neutron irradiation up to 2.52 × 1012 n/cm2 to the control tissue constructed by NHDF (NHDF3D) and BxPC3 cell loaded tissue (NHDF3D/BxPC3) resulted in detection of 1.6 times higher number of α-ray/recoiled Li particle tracks in NHDF3D/BxPC3 in comparison to NHDF3D, demonstrating that putative irradiation damage to cancer cells can be evaluated by this system. On a cellular level, the hit number of α-ray/recoiled Li particle tracks per single BxPC3 cells and NHDF was evaluated as 5.46 and 1.71, respectively. The tumor and normal tissue ratio (T/N ratio) was 3.19, which was corresponded with those of BPA as 2 - 4 that reported in the previous studies. This new in vitro evaluation system may provide a useful tool for a low cost, labor-saving, and non-animal method for the development of new boron-containing drugs or improvement of BNCT conditions.展开更多
One of the important matters that must be determined in advance when performing BNCT treatment is the optimization of neutron irradiation time and dose. In this article, following the previous article (2.52 × 101...One of the important matters that must be determined in advance when performing BNCT treatment is the optimization of neutron irradiation time and dose. In this article, following the previous article (2.52 × 1012 n/cm2) (Case 1), double irradiation (5.04 × 1012 n/cm2) was further performed (Case 2) by verifying the radiation sensitivity performance of the artificial tumor tissue NHDF3D/BxPC3 and the possibility of evaluating the optimum neutron dose required for treatment was examined. As a result, although the radiation damage rate in the normal tissue NHDF3D and the tumor tissue BxPC3 increased in proportion to the irradiation dose due to heavy irradiation in Case 1 or more, the increase in the damage rate in the normal tissue exceeded the tumor tissue. Furthermore, the tumor/normal tissue damage ratio T/N ratio showed the maximum value in Case 1, and the dose ratio in Case 2 with a higher dose showed a tendency to decrease. From the above experimental facts, it was shown that irradiation dose optimization is possible to some extent by an evaluation method using an artificial tumor tissue.展开更多
基金supported by the National Nature Science Foundation of China(No.1210050454)the program of Chinese Scholarship Council(No.202106280126)。
文摘In the past decade,boron neutron capture therapy utilizing an accelerator-based neutron source(ABNS)designed primarily for producing epithermal neutrons has been implemented in the treatment of brain tumors and other cancers.The specifications for designing an epithermal beam are primarily based on the IAEA-TECODC-1223 report,issued in 2001 for reactor neutron sources.Based on this report,the latest perspectives and clinical requirements,we designed an ABNS capable of adjusting the average neutron beam energy.The design was based on a 2.8 MeV,20 mA proton beam bombarding a lithium target to produce neutrons that were subsequently moderated and tuned through a tunable beam shaping assembly(BSA)which can modify the thicknesses and materials of the coin-shaped moderators,back reflectors,filters,and collimators.The simulation results demonstrated that epithermal neutron beams for deep seated tumor treatment,which were generated by utilizing magnesium fluoride with lengths ranging between 28 and 36 cm as the moderator,possessed a treatment depth of 5.6 cm although the neutron flux peak shifts from 4.5 to 1.0 keV.When utilizing a thinner moderator,a less accelerated beam power can meet the treatment requirements.However,higher powers reduced the treatment time.In contrast,employing a thick moderator can reduce the skin dose.In scenarios that required relatively low energy neutron beams,the removal of the thermal neutron filter can raise the thermal neutron flux at the beam port.And the depth of the dose rate peak could be adjusted between 0.25 and 2.20 cm by combining magnesium fluoride and polyethylene coins of different thicknesses.Hence,this device has a better adaptability for the treatment of superficial tumors.Overall,the tunable BSA provides greater flexibility for clinical treatment than common BSA designs that can only adjust the port size.
文摘Boron neutron capture therapy (BNCT) is based on the incorporation of boron-containing drugs to cancer cells and the nuclear reaction of 10B atoms by thermal neutron irradiation results in tumor degeneration. For the development of this therapy, currently, long time and high cost consuming experiments using many animals are required. In this study, we constructed a new in vitro evaluation system for BNCT by combination of an artificial tumor tissue model, comprised of normal human dermal-derived fibroblast (NHDF) and human pancreatic cancer cell line BxPC3, and the optical plastic material CR-39 as a solid state nuclear track detector. Administration of boronophenylalanine (10BPA) as a boron-containing drug and neutron irradiation up to 2.52 × 1012 n/cm2 to the control tissue constructed by NHDF (NHDF3D) and BxPC3 cell loaded tissue (NHDF3D/BxPC3) resulted in detection of 1.6 times higher number of α-ray/recoiled Li particle tracks in NHDF3D/BxPC3 in comparison to NHDF3D, demonstrating that putative irradiation damage to cancer cells can be evaluated by this system. On a cellular level, the hit number of α-ray/recoiled Li particle tracks per single BxPC3 cells and NHDF was evaluated as 5.46 and 1.71, respectively. The tumor and normal tissue ratio (T/N ratio) was 3.19, which was corresponded with those of BPA as 2 - 4 that reported in the previous studies. This new in vitro evaluation system may provide a useful tool for a low cost, labor-saving, and non-animal method for the development of new boron-containing drugs or improvement of BNCT conditions.
文摘One of the important matters that must be determined in advance when performing BNCT treatment is the optimization of neutron irradiation time and dose. In this article, following the previous article (2.52 × 1012 n/cm2) (Case 1), double irradiation (5.04 × 1012 n/cm2) was further performed (Case 2) by verifying the radiation sensitivity performance of the artificial tumor tissue NHDF3D/BxPC3 and the possibility of evaluating the optimum neutron dose required for treatment was examined. As a result, although the radiation damage rate in the normal tissue NHDF3D and the tumor tissue BxPC3 increased in proportion to the irradiation dose due to heavy irradiation in Case 1 or more, the increase in the damage rate in the normal tissue exceeded the tumor tissue. Furthermore, the tumor/normal tissue damage ratio T/N ratio showed the maximum value in Case 1, and the dose ratio in Case 2 with a higher dose showed a tendency to decrease. From the above experimental facts, it was shown that irradiation dose optimization is possible to some extent by an evaluation method using an artificial tumor tissue.