As generalization of the fractional Fourier transform (FRFT), the linear canonical transform (LCT) has been used in several areas, including optics and signal processing. Many properties for this transform are alr...As generalization of the fractional Fourier transform (FRFT), the linear canonical transform (LCT) has been used in several areas, including optics and signal processing. Many properties for this transform are already known, but the convolution theorems, similar to the version of the Fourier transform, are still to be determined. In this paper, the authors derive the convolution theorems for the LCT, and explore the sampling theorem and multiplicative filter for the band limited signal in the linear canonical domain. Finally, the sampling and reconstruction formulas are deduced, together with the construction methodology for the above mentioned multiplicative filter in the time domain based on fast Fourier transform (FFT), which has much lower computational load than the construction method in the linear canonical domain.展开更多
In this paper, a characterization of continuous module homomorphisms on random semi-normed modules is first given; then the characterization is further used to show that the Hahn-Banach type of extension theorem is st...In this paper, a characterization of continuous module homomorphisms on random semi-normed modules is first given; then the characterization is further used to show that the Hahn-Banach type of extension theorem is still true for continuous module homomorphisms on random semi-normed modules.展开更多
A deep representation theorem of random conjugate spaces and its several important applications are given. As an application of the representation theorem, the following basic theorem is also proved: let B* be the con...A deep representation theorem of random conjugate spaces and its several important applications are given. As an application of the representation theorem, the following basic theorem is also proved: let B* be the conjugate space of a Banach space B, be a given probability space. Then every B*-valued w*-u-measurable function defined on is w*-equivalent to a B*-valued u-measurable function defined on if and only if B* has the Radon-Nikodym property with respect to展开更多
In this paper. based on large deviation formulas established in stronger topology generated by Hlder norm, we obtain the functional limit theorems for C-R increments of k-dimensional Brownian motion in Hlder norm
This paper consists of three main parts.One of them is to develop local and global Sobolev interpolation inequalities of any higher order for the nonisotropic Sobolev spaces on stratified nilpotent Lie groups.Despite ...This paper consists of three main parts.One of them is to develop local and global Sobolev interpolation inequalities of any higher order for the nonisotropic Sobolev spaces on stratified nilpotent Lie groups.Despite the extensive research after Jerison’s work[3]on Poincaré-type inequalities for Hrmander’s vector fields over the years,our results given here even in the nonweighted case appear to be new.Such interpolation inequalities have crucial applications to subelliptic or parabolic PDE’s involving vector fields.The main tools to prove such inequalities are approximating the Sobolev func- tions by polynomials associated with the left invariant vector fields on G.Some very useful properties for polynomials associated with the functions are given here and they appear to have independent interests in their own rights.Finding the existence of such polynomials is the second main part of this paper.Main results of these two parts have been announced in the author’s paper in Mathematical Research Letters[38]. The third main part of this paper contains extension theorems on anisotropic Sobolev spaces on stratified groups and their applications to proving Sobolev interpolation inequalities on(εδ)domains. Some results of weighted Sobolev spaces are also given here.We construct a linear extension operator which is bounded on different Sobolev spaces simultaneously.In particular,we are able to construct a bounded linear extension operator such that the derivatives of the extended function can be controlled by the same order of derivatives of the given Sobolev functions.Theorems are stated and proved for weighted anisotropic Sobolev spaces on stratified groups.展开更多
In this paper we apply the (variant) fountain theorems to study the symmetric nonlinear Kirch- hoff nonlocal problems. Under the Ambrosetti-Rabinowitz's 4-superlinearity condition, or no Ambrosetti- Rabinowitz's 4...In this paper we apply the (variant) fountain theorems to study the symmetric nonlinear Kirch- hoff nonlocal problems. Under the Ambrosetti-Rabinowitz's 4-superlinearity condition, or no Ambrosetti- Rabinowitz's 4-superlinearity condition, we present two results of existence of infinitely many large energy solutions, respectively.展开更多
In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value problem. By using some fixed point theorems on cone, some existence results of positive solutions ...In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value problem. By using some fixed point theorems on cone, some existence results of positive solutions are obtained.展开更多
By representing random conjugate spaces a general representation theorem on classical duals is proved. For application, we unify and improve many known important representation theorems of the dual of Lebesgue-Bochner...By representing random conjugate spaces a general representation theorem on classical duals is proved. For application, we unify and improve many known important representation theorems of the dual of Lebesgue-Bochner function spaces.展开更多
In this paper, we investigate the pth moment uniformly asymptotic stability of impulsive stochastic ftmctional differential systems by extending some Razumikhin-type theorems. Based on the Lyapunov functions and Razum...In this paper, we investigate the pth moment uniformly asymptotic stability of impulsive stochastic ftmctional differential systems by extending some Razumikhin-type theorems. Based on the Lyapunov functions and Razumikhin techniques, some criteria are established and their applications to impulsive stochastic delay systems are proposed. An illustrative example shows the effectiveness of our results.展开更多
In this paper, we obtain some existence results for a class of singular semilinear elliptic problems where we improve some earlier results of Zhijun Zhang. We show the existence of entire positive solutions without th...In this paper, we obtain some existence results for a class of singular semilinear elliptic problems where we improve some earlier results of Zhijun Zhang. We show the existence of entire positive solutions without the monotonic condition imposed in Zhang’s paper. The main point of our technique is to choose an approximating sequence and prove its convergence. The desired compactness can be obtained by the Sobolev embedding theorems.展开更多
We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environmen...We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environment indexed by the time n. The envi- ronment is supposed to be independent and identically distributed. For A C R, let Zn(A) be the number of particles of generation n located in A. We show central limit theorems for the counting measure Zn (-) with appropriate normalization.展开更多
In this paper, we will prove that Ky Fan’s Theorem (Math. Z. 112(1969), 234-240) is true for 1-set-contractive maps defined on a bounded closed convex subset K in a Banach space with int K≠ . This class of 1-set-con...In this paper, we will prove that Ky Fan’s Theorem (Math. Z. 112(1969), 234-240) is true for 1-set-contractive maps defined on a bounded closed convex subset K in a Banach space with int K≠ . This class of 1-set-contractive maps includes condensing maps, nonexpansive maps, semicontractive maps, LANE maps and others. As applications of our theorems, some fixed point theorems of non-self- maps are proved under various well-known boundary conditions. Our results are generalizations and improvements of the recent results obtained by many authors.展开更多
In this paper, we deal with the problem of uniqueness of entire or meromorphic functions and obtain some results that are improvements over those of M. Ozawa, H. Ueda, K. Shibazaki and Yi Hongxun. An example shows tha...In this paper, we deal with the problem of uniqueness of entire or meromorphic functions and obtain some results that are improvements over those of M. Ozawa, H. Ueda, K. Shibazaki and Yi Hongxun. An example shows that the results in this paper are sharp.展开更多
To make the geometrical basis for soft matters with curved surfaces such as biomembranes as simple as possible, a symmetrical analytical system was developed in conventional differential geometry. The conventional sec...To make the geometrical basis for soft matters with curved surfaces such as biomembranes as simple as possible, a symmetrical analytical system was developed in conventional differential geometry. The conventional second fundamental tensor is replaced by the so-called conjugate fundamental tensor. Because the differential properties of the conjugate fundamental tensor and the first fundamental tensor are symmetrical, the symmetrical analytical system including the symmetrical differential operators, symmetrical differential characteristics, and symmetrical integral theorems for tensor fields defined on curved surfaces can be constructed. From the symmetrical analytical system, the symmetrical integral theorems for mean curvature and Gauss curvature, with which the symmetrical Minkowski integral formulas are easily deduced just as special cases, can be derived. The applications of this symmetrical analytical system to biology not only display its simplicity and beauty, but also show its powers in depicting the symmetrical patterns of networks of biomembrane nanotubes. All these symmetrical patterns in soft matters should be just the reasonable and natural results of the symmetrical analytical system.展开更多
Let Mn be an n-dimensional compact minimal submanifolds in Sin(1)× R. We prove two pinching theorems by the Ricci curvature and the sectional curvature pinching conditions respectively. In fact, we characterize...Let Mn be an n-dimensional compact minimal submanifolds in Sin(1)× R. We prove two pinching theorems by the Ricci curvature and the sectional curvature pinching conditions respectively. In fact, we characterize the Clifford tori and Veronese submanifolds by our pinching conditions respectively.展开更多
The unequal meshsteps are unavoidable in general for scientific and engineering computations especially in large Scale computations. The analysis of difference schemes with nonuniform meshes is very rare even by use o...The unequal meshsteps are unavoidable in general for scientific and engineering computations especially in large Scale computations. The analysis of difference schemes with nonuniform meshes is very rare even by use of fully heuristic methods. For the purpose of the systematic and theoretical study of the finite difference method with nonuniform meshes for the problems of partial differential equations, the general interpolation formulas for the spaces of discrete functions of one index with unequal meshsteps are established in the present work. These formulas give the connected relationships among the norms of various types, such as' the sum of powers of discrete values, the discrete maximum modulo, the discrete Holder and Lipschitz coefficients.展开更多
A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research t...A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research topics in mathematical programming. In this paper, we discuss a fairly large number of paramet- ric duality results under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.展开更多
In this paper, the existence and nonexistence of solutions to a class of quasilinear elliptic equations with nonsmooth functionals are discussed, and the results obtained are applied to quasilinear SchrSdinger equatio...In this paper, the existence and nonexistence of solutions to a class of quasilinear elliptic equations with nonsmooth functionals are discussed, and the results obtained are applied to quasilinear SchrSdinger equations with negative parameter which arose from the study of self-channeling of high-power ultrashort laser in matter.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.60232010 and 60572094)the Ministerial Foundation of China(Grant No.6140445).
文摘As generalization of the fractional Fourier transform (FRFT), the linear canonical transform (LCT) has been used in several areas, including optics and signal processing. Many properties for this transform are already known, but the convolution theorems, similar to the version of the Fourier transform, are still to be determined. In this paper, the authors derive the convolution theorems for the LCT, and explore the sampling theorem and multiplicative filter for the band limited signal in the linear canonical domain. Finally, the sampling and reconstruction formulas are deduced, together with the construction methodology for the above mentioned multiplicative filter in the time domain based on fast Fourier transform (FFT), which has much lower computational load than the construction method in the linear canonical domain.
文摘In this paper, a characterization of continuous module homomorphisms on random semi-normed modules is first given; then the characterization is further used to show that the Hahn-Banach type of extension theorem is still true for continuous module homomorphisms on random semi-normed modules.
基金Project supported by the National Natural Science Foundation of China the Natural Science Foundation of Fujian Province of China.
文摘A deep representation theorem of random conjugate spaces and its several important applications are given. As an application of the representation theorem, the following basic theorem is also proved: let B* be the conjugate space of a Banach space B, be a given probability space. Then every B*-valued w*-u-measurable function defined on is w*-equivalent to a B*-valued u-measurable function defined on if and only if B* has the Radon-Nikodym property with respect to
文摘In this paper. based on large deviation formulas established in stronger topology generated by Hlder norm, we obtain the functional limit theorems for C-R increments of k-dimensional Brownian motion in Hlder norm
基金The author is partially supported by the National Science Foundation of U.S.,Grant DMS96-22996
文摘This paper consists of three main parts.One of them is to develop local and global Sobolev interpolation inequalities of any higher order for the nonisotropic Sobolev spaces on stratified nilpotent Lie groups.Despite the extensive research after Jerison’s work[3]on Poincaré-type inequalities for Hrmander’s vector fields over the years,our results given here even in the nonweighted case appear to be new.Such interpolation inequalities have crucial applications to subelliptic or parabolic PDE’s involving vector fields.The main tools to prove such inequalities are approximating the Sobolev func- tions by polynomials associated with the left invariant vector fields on G.Some very useful properties for polynomials associated with the functions are given here and they appear to have independent interests in their own rights.Finding the existence of such polynomials is the second main part of this paper.Main results of these two parts have been announced in the author’s paper in Mathematical Research Letters[38]. The third main part of this paper contains extension theorems on anisotropic Sobolev spaces on stratified groups and their applications to proving Sobolev interpolation inequalities on(εδ)domains. Some results of weighted Sobolev spaces are also given here.We construct a linear extension operator which is bounded on different Sobolev spaces simultaneously.In particular,we are able to construct a bounded linear extension operator such that the derivatives of the extended function can be controlled by the same order of derivatives of the given Sobolev functions.Theorems are stated and proved for weighted anisotropic Sobolev spaces on stratified groups.
文摘In this paper we apply the (variant) fountain theorems to study the symmetric nonlinear Kirch- hoff nonlocal problems. Under the Ambrosetti-Rabinowitz's 4-superlinearity condition, or no Ambrosetti- Rabinowitz's 4-superlinearity condition, we present two results of existence of infinitely many large energy solutions, respectively.
文摘In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value problem. By using some fixed point theorems on cone, some existence results of positive solutions are obtained.
文摘By representing random conjugate spaces a general representation theorem on classical duals is proved. For application, we unify and improve many known important representation theorems of the dual of Lebesgue-Bochner function spaces.
基金supported by the National Natural Science Foundation of China(60874114)
文摘In this paper, we investigate the pth moment uniformly asymptotic stability of impulsive stochastic ftmctional differential systems by extending some Razumikhin-type theorems. Based on the Lyapunov functions and Razumikhin techniques, some criteria are established and their applications to impulsive stochastic delay systems are proposed. An illustrative example shows the effectiveness of our results.
基金supported in part by NSF(Youth) of Shandong Province and NNSF of China
文摘In this paper, we obtain some existence results for a class of singular semilinear elliptic problems where we improve some earlier results of Zhijun Zhang. We show the existence of entire positive solutions without the monotonic condition imposed in Zhang’s paper. The main point of our technique is to choose an approximating sequence and prove its convergence. The desired compactness can be obtained by the Sobolev embedding theorems.
基金partially supported by the National Natural Science Foundation of China(NSFC,11101039,11171044,11271045)a cooperation program between NSFC and CNRS of France(11311130103)+1 种基金the Fundamental Research Funds for the Central UniversitiesHunan Provincial Natural Science Foundation of China(11JJ2001)
文摘We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environment indexed by the time n. The envi- ronment is supposed to be independent and identically distributed. For A C R, let Zn(A) be the number of particles of generation n located in A. We show central limit theorems for the counting measure Zn (-) with appropriate normalization.
基金Project supported by the National Natural Science Foundation of ChinaNatural Science Foundation of Shandong Province of China
文摘In this paper, we will prove that Ky Fan’s Theorem (Math. Z. 112(1969), 234-240) is true for 1-set-contractive maps defined on a bounded closed convex subset K in a Banach space with int K≠ . This class of 1-set-contractive maps includes condensing maps, nonexpansive maps, semicontractive maps, LANE maps and others. As applications of our theorems, some fixed point theorems of non-self- maps are proved under various well-known boundary conditions. Our results are generalizations and improvements of the recent results obtained by many authors.
基金Supported by the National Natural Science Foundation of China.
文摘In this paper, we deal with the problem of uniqueness of entire or meromorphic functions and obtain some results that are improvements over those of M. Ozawa, H. Ueda, K. Shibazaki and Yi Hongxun. An example shows that the results in this paper are sharp.
基金the National Natural Science Foundation of China (No.10572076)
文摘To make the geometrical basis for soft matters with curved surfaces such as biomembranes as simple as possible, a symmetrical analytical system was developed in conventional differential geometry. The conventional second fundamental tensor is replaced by the so-called conjugate fundamental tensor. Because the differential properties of the conjugate fundamental tensor and the first fundamental tensor are symmetrical, the symmetrical analytical system including the symmetrical differential operators, symmetrical differential characteristics, and symmetrical integral theorems for tensor fields defined on curved surfaces can be constructed. From the symmetrical analytical system, the symmetrical integral theorems for mean curvature and Gauss curvature, with which the symmetrical Minkowski integral formulas are easily deduced just as special cases, can be derived. The applications of this symmetrical analytical system to biology not only display its simplicity and beauty, but also show its powers in depicting the symmetrical patterns of networks of biomembrane nanotubes. All these symmetrical patterns in soft matters should be just the reasonable and natural results of the symmetrical analytical system.
基金supported by National Natural Science Foundation of China (Grant No.11271214)
文摘Let Mn be an n-dimensional compact minimal submanifolds in Sin(1)× R. We prove two pinching theorems by the Ricci curvature and the sectional curvature pinching conditions respectively. In fact, we characterize the Clifford tori and Veronese submanifolds by our pinching conditions respectively.
文摘The unequal meshsteps are unavoidable in general for scientific and engineering computations especially in large Scale computations. The analysis of difference schemes with nonuniform meshes is very rare even by use of fully heuristic methods. For the purpose of the systematic and theoretical study of the finite difference method with nonuniform meshes for the problems of partial differential equations, the general interpolation formulas for the spaces of discrete functions of one index with unequal meshsteps are established in the present work. These formulas give the connected relationships among the norms of various types, such as' the sum of powers of discrete values, the discrete maximum modulo, the discrete Holder and Lipschitz coefficients.
文摘A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research topics in mathematical programming. In this paper, we discuss a fairly large number of paramet- ric duality results under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.
基金supported by NSF of China(11201488),supported by NSF of China(11371146)Hunan Provincial Natural Science Foundation of China(14JJ4002)
文摘In this paper, the existence and nonexistence of solutions to a class of quasilinear elliptic equations with nonsmooth functionals are discussed, and the results obtained are applied to quasilinear SchrSdinger equations with negative parameter which arose from the study of self-channeling of high-power ultrashort laser in matter.