The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in...The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in LW network models with different LW sizes were investigated using the cascading failures load model. We found that the LW size has a significant impact on the network's robustness against deliberate attacks. It is much easier to trigger cascading failures in LW evolving networks with a larger LW size. Therefore, to avoid cascading failures in real networks with local preferential attachment such as the Internet, the World Trade Web and the multi-agent system, the LW size should be as small as possible.展开更多
A universal estimation formula for the average path length of scale free networks is given in this paper. Different from other estimation formulas, most of which use the size of network, N, as the only parameter, two ...A universal estimation formula for the average path length of scale free networks is given in this paper. Different from other estimation formulas, most of which use the size of network, N, as the only parameter, two parameters including N and a second parameter α are included in our formula. The parameter α is the power-law exponent, which represents the local connectivity property of a network. Because of this, the formula captures an important property that the local connectivity property at a microscopic level can determine the global connectivity of the whole network. The use of this new parameter distinguishes this approach from the other estimation formulas, and makes it a universal estimation formula, which can be applied to all types of scale-free networks. The conclusion is made that the small world feature is a derivative feature of a scale free network. If a network follows the power-law degree distribution, it must be a small world network. The power-law degree distribution property, while making the network economical, preserves the efficiency through this small world property when the network is scaled up. In other words, a real scale-free network is scaled at a relatively small cost and a relatively high efficiency, and that is the desirable result of self-organization optimization.展开更多
基金the National Basic Research Program (973) of China (No. 2004CB217902)the National Natural Science Foundation of China (Nos. 60421002 and 60804045)the Postdoctoral Science Foundation of China (No. 20070421163)
文摘The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in LW network models with different LW sizes were investigated using the cascading failures load model. We found that the LW size has a significant impact on the network's robustness against deliberate attacks. It is much easier to trigger cascading failures in LW evolving networks with a larger LW size. Therefore, to avoid cascading failures in real networks with local preferential attachment such as the Internet, the World Trade Web and the multi-agent system, the LW size should be as small as possible.
基金supported by the National Natural Science Foundation of China (Grant Nos 60672142, 60772053 and 90304005)
文摘A universal estimation formula for the average path length of scale free networks is given in this paper. Different from other estimation formulas, most of which use the size of network, N, as the only parameter, two parameters including N and a second parameter α are included in our formula. The parameter α is the power-law exponent, which represents the local connectivity property of a network. Because of this, the formula captures an important property that the local connectivity property at a microscopic level can determine the global connectivity of the whole network. The use of this new parameter distinguishes this approach from the other estimation formulas, and makes it a universal estimation formula, which can be applied to all types of scale-free networks. The conclusion is made that the small world feature is a derivative feature of a scale free network. If a network follows the power-law degree distribution, it must be a small world network. The power-law degree distribution property, while making the network economical, preserves the efficiency through this small world property when the network is scaled up. In other words, a real scale-free network is scaled at a relatively small cost and a relatively high efficiency, and that is the desirable result of self-organization optimization.