Based on the second viscosity, the local differential quadrature (LDQ) method is applied to solve shock tube problems. It is shown that it is necessary to consider the second viscosity to calculate shocks and to sim...Based on the second viscosity, the local differential quadrature (LDQ) method is applied to solve shock tube problems. It is shown that it is necessary to consider the second viscosity to calculate shocks and to simulate shock tubes based on the viscosity model. The roles of the shear viscous stress and the second viscous stress are checked. The results show that the viscosity model combined with the LDQ method can capture the main characteristics of shocks, and this technique is objective and simple.展开更多
In situ observations and numerical simulations of turbulence are essential to understanding vertical mixing processes and their dynamical controls on both physical and biogeochemical processes in coastal embayments. U...In situ observations and numerical simulations of turbulence are essential to understanding vertical mixing processes and their dynamical controls on both physical and biogeochemical processes in coastal embayments. Using in situ data collected by bottom-mounted acoustic Doppler current profilers(ADCPs) and a free-falling microstructure profiler, as well as numerical simulations with a second-moment turbulence closure model, we studied turbulence and mixing in the Xiamen Bay, a freshwater-influenced tidal bay located at the west coast of the Taiwan Strait. Dynamically, the bay is driven predominantly by the M2 tide, and it is under a significant influence of the freshwater discharged from the Jiulong River. It is found that turbulence quantities such as the production and dissipation rates of the turbulent kinetic energy(TKE) were all subject to significant tidal variations, with a pronounced ebb-flood asymmetry. Turbulence was stronger during flood than ebb. During the flooding period, the whole water column was nearly well mixed with the depth-averaged TKE production rate and vertical eddy viscosity being up to 5?10?6 W kg?1 and 2?10?2 m2 s?1, respectively. In contrast, during the ebb strong turbulence was confined only to a 5?8 m thick bottom boundary layer, where turbulence intensity generally decreases with distance from the seafloor. Diagnosis of the potential energy anomaly showed that the ebb-flood asymmetry in turbulent dissipation and mixing was due mainly to tidal straining process as a result of the interaction between vertically shared tidal currents and horizontal density gradients. The role of vertical mixing in generating the asymmetry was secondary. A direct comparison of the modeled and observed turbulence quantities confirmed the applicability of the second-moment turbulence closure scheme in modeling turbulent processes in this weakly stratified tidally energetic environment, but also pointed out the necessity of further refinements of the model.展开更多
In this paper we study the equations governing the unsteady motion of an incompressible homogeneous generalized second grade fluid subject to periodic boundary conditions. We establish the existence of global-in-time ...In this paper we study the equations governing the unsteady motion of an incompressible homogeneous generalized second grade fluid subject to periodic boundary conditions. We establish the existence of global-in-time strong solutions for shear thickening flows in the two and three dimensional case. We also prove uniqueness of such solution without any smallness condition on the initial data or restriction on the material moduli.展开更多
As a follow-up research of the work on the natural viscosity of turbulence of Huang et al. [Journal of Turbulence(2003)], here we investigate the thixotropic effect of a turbulent Newtonian fluid on the basis of the e...As a follow-up research of the work on the natural viscosity of turbulence of Huang et al. [Journal of Turbulence(2003)], here we investigate the thixotropic effect of a turbulent Newtonian fluid on the basis of the ensemble-averaged Navier–Stokes equation. In view of the natural viscosity, we show that in homogeneous isotropic turbulence the turbulent Newtonian fluid behaves like a thixotropic fluid, exhibiting the thixotropic effect with its natural viscosity decreasing with time.展开更多
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 50921001)the National Basic Research Program of China (973Program) (No. 2010CB832700)
文摘Based on the second viscosity, the local differential quadrature (LDQ) method is applied to solve shock tube problems. It is shown that it is necessary to consider the second viscosity to calculate shocks and to simulate shock tubes based on the viscosity model. The roles of the shear viscous stress and the second viscous stress are checked. The results show that the viscosity model combined with the LDQ method can capture the main characteristics of shocks, and this technique is objective and simple.
基金supported by the National Natural Science Foundation of China(Grant Nos.41006017,41476006)the Natural Science Foundation of Fujian Province of China(Grant No.2015J06010)
文摘In situ observations and numerical simulations of turbulence are essential to understanding vertical mixing processes and their dynamical controls on both physical and biogeochemical processes in coastal embayments. Using in situ data collected by bottom-mounted acoustic Doppler current profilers(ADCPs) and a free-falling microstructure profiler, as well as numerical simulations with a second-moment turbulence closure model, we studied turbulence and mixing in the Xiamen Bay, a freshwater-influenced tidal bay located at the west coast of the Taiwan Strait. Dynamically, the bay is driven predominantly by the M2 tide, and it is under a significant influence of the freshwater discharged from the Jiulong River. It is found that turbulence quantities such as the production and dissipation rates of the turbulent kinetic energy(TKE) were all subject to significant tidal variations, with a pronounced ebb-flood asymmetry. Turbulence was stronger during flood than ebb. During the flooding period, the whole water column was nearly well mixed with the depth-averaged TKE production rate and vertical eddy viscosity being up to 5?10?6 W kg?1 and 2?10?2 m2 s?1, respectively. In contrast, during the ebb strong turbulence was confined only to a 5?8 m thick bottom boundary layer, where turbulence intensity generally decreases with distance from the seafloor. Diagnosis of the potential energy anomaly showed that the ebb-flood asymmetry in turbulent dissipation and mixing was due mainly to tidal straining process as a result of the interaction between vertically shared tidal currents and horizontal density gradients. The role of vertical mixing in generating the asymmetry was secondary. A direct comparison of the modeled and observed turbulence quantities confirmed the applicability of the second-moment turbulence closure scheme in modeling turbulent processes in this weakly stratified tidally energetic environment, but also pointed out the necessity of further refinements of the model.
文摘In this paper we study the equations governing the unsteady motion of an incompressible homogeneous generalized second grade fluid subject to periodic boundary conditions. We establish the existence of global-in-time strong solutions for shear thickening flows in the two and three dimensional case. We also prove uniqueness of such solution without any smallness condition on the initial data or restriction on the material moduli.
文摘As a follow-up research of the work on the natural viscosity of turbulence of Huang et al. [Journal of Turbulence(2003)], here we investigate the thixotropic effect of a turbulent Newtonian fluid on the basis of the ensemble-averaged Navier–Stokes equation. In view of the natural viscosity, we show that in homogeneous isotropic turbulence the turbulent Newtonian fluid behaves like a thixotropic fluid, exhibiting the thixotropic effect with its natural viscosity decreasing with time.