The nullity of a graph G is defined to be the multiplicity of the eigenvalue zero in its spectrum. In this paper we characterize the unicyclic graphs with nullity one in aspect of its graphical construction.
A graph G is called triangle-free if G does not contain any triangle as its induced subgraph.Let G_(n)be the set of triangle-free graphs of order n each of which has three positive eigenvalues.In this paper,we find 20...A graph G is called triangle-free if G does not contain any triangle as its induced subgraph.Let G_(n)be the set of triangle-free graphs of order n each of which has three positive eigenvalues.In this paper,we find 20 specific graphs in G_(n),each of which has nullity no more than 2,and we show that in terms of three graph transformations all the other graphs of G_(n)can be constructed from these 20 specific graphs.Hence,we completely characterize the triangle-free graphs with exactly three positive eigenvalues.展开更多
The rank of a graph is defined to be the rank of its adjacency matrix. In this paper, the Matlab was used to explore the graphs with rank no more than 5;the performance of the proposed method was compared with former ...The rank of a graph is defined to be the rank of its adjacency matrix. In this paper, the Matlab was used to explore the graphs with rank no more than 5;the performance of the proposed method was compared with former methods, which is simpler and clearer;and the results show that all graphs with rank no more than 5 are characterized.展开更多
Let G be a graph. G is singular if and only if the adjacency matrix of graph G is singular. The adjacency matrix of graph G is singular if and only if there is at least one zero eigenvalue. The study of the singularit...Let G be a graph. G is singular if and only if the adjacency matrix of graph G is singular. The adjacency matrix of graph G is singular if and only if there is at least one zero eigenvalue. The study of the singularity of graphs is of great significance for better characterizing the properties of graphs. The following definitions are given. There are 4 paths, the starting points of the four paths are bonded into one point, and the ending point of each path is bonded to a cycle respectively, so this graph is called a kind of quadcyclic peacock graph. And in this kind of quadcyclic peacock graph assuming the number of points on the four cycles is a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, a<sub>4</sub>, and the number of points on the four paths is s<sub>1</sub>, s<sub>2</sub>, s<sub>3</sub>, s<sub>4</sub>, respectively. This type of graph is denoted by γ (a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, a<sub>4</sub>, s<sub>1</sub>, s<sub>2</sub>, s<sub>3</sub>, s<sub>4</sub>), called γ graph. And let γ (a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, a<sub>4</sub>, 1, 1, 1, 1) = δ (a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, a<sub>4</sub>), this type four cycles peacock graph called δ graph. In this paper, we give the necessary and sufficient conditions for the singularity of γ graph and δ graph.展开更多
The number of zero eigenvalues in the spectrum of the graph G is called its nullity and is denoted by η(G). In this paper, we determine the all extremal unicyclic graphs achieving the fifth upper bound n - 6 and th...The number of zero eigenvalues in the spectrum of the graph G is called its nullity and is denoted by η(G). In this paper, we determine the all extremal unicyclic graphs achieving the fifth upper bound n - 6 and the sixth upperbound n - 7.展开更多
We called graph G non-singular if adjacency matrix A (G) of G is non-singular. A connected graph with n vertices and n-1, n and n+1 edges are called the tree, the unicyclic graph and the bicyclic graph. Respectively, ...We called graph G non-singular if adjacency matrix A (G) of G is non-singular. A connected graph with n vertices and n-1, n and n+1 edges are called the tree, the unicyclic graph and the bicyclic graph. Respectively, as we all know, each connected bicyclic graph must contain ∞(a,s,b) or?θ(p,l,q) as the induced subgraph. In this paper, by using three graph transformations which do not change the singularity of the graph, the non-singular trees, unicyclic graphs and bicyclic graphs are obtained.展开更多
The nullity of a graph is the multiplicity of the eigenvalue zero in its spectrum. In this paper we show the expression of the nullity and nullity set of unicyclic graphs with n vertices and girth r, and characterize ...The nullity of a graph is the multiplicity of the eigenvalue zero in its spectrum. In this paper we show the expression of the nullity and nullity set of unicyclic graphs with n vertices and girth r, and characterize the unicyclic graphs with extremal nullity.展开更多
Let G be a graph and A=(aij)n×n be the adjacency matrix of G, the eigenvalues of A are said to be the eigenvalues of the graph G, and to form the spectrum of this graph. The numbers of positive, negative and zero...Let G be a graph and A=(aij)n×n be the adjacency matrix of G, the eigenvalues of A are said to be the eigenvalues of the graph G, and to form the spectrum of this graph. The numbers of positive, negative and zero eigenvalues in the spectrum of the graph G are called positive and negative inertia indexes and nullity of the graph G, are denoted by p(G), n(G), η(G), respectively, and are collectively called inertia indexes of the graph G. The inertia indexes have many important applications in chemistry and mathematics. The purpose of the research of this paper is to calculate the inertia indexes of one special kind of tricyclic graphs. A new calculation method of the inertia indexes of this tricyclic graphs with large vertices is given, and the inertia indexes of this tricyclic graphs with fewer vertices can be calculated by Matlab.展开更多
Let G be a graph of order n with vertex set V(G) = {v1, v2,…, vn}. the adjacency matrix of G is an n × n matrix A(G) = (aij)n×n, where aij is the number edges joining vi and vj in G. The eigenvalues λ1, λ...Let G be a graph of order n with vertex set V(G) = {v1, v2,…, vn}. the adjacency matrix of G is an n × n matrix A(G) = (aij)n×n, where aij is the number edges joining vi and vj in G. The eigenvalues λ1, λ2, λ3,…, λn, of A(G) are said to be the eigenvalues of the graph G and to form the spectrum of this graph. The number of nonzero eigenvalues and zero eigenvalues in the spectrum of G are called rank and nullity of the graph G, and are denoted by r(G) and η(G), respectively. It follows from the definitions that r(G) + η(G) = n. In this paper, by using the operation of multiplication of vertices, a characterization for graph G with pendant vertices and r(G) = 7 is shown, and then a characterization for graph G with pendant vertices and r(G) less than or equal to 7 is shown.展开更多
基金Supported by the Project of Talent Introduction for Graduates of Chizhou University (Grant No2009RC011)
文摘The nullity of a graph G is defined to be the multiplicity of the eigenvalue zero in its spectrum. In this paper we characterize the unicyclic graphs with nullity one in aspect of its graphical construction.
基金Supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01A218)the Doctoral Scientific Research Foundation of Xinjiang Normal University(No.XJNUBS2009).
文摘A graph G is called triangle-free if G does not contain any triangle as its induced subgraph.Let G_(n)be the set of triangle-free graphs of order n each of which has three positive eigenvalues.In this paper,we find 20 specific graphs in G_(n),each of which has nullity no more than 2,and we show that in terms of three graph transformations all the other graphs of G_(n)can be constructed from these 20 specific graphs.Hence,we completely characterize the triangle-free graphs with exactly three positive eigenvalues.
文摘The rank of a graph is defined to be the rank of its adjacency matrix. In this paper, the Matlab was used to explore the graphs with rank no more than 5;the performance of the proposed method was compared with former methods, which is simpler and clearer;and the results show that all graphs with rank no more than 5 are characterized.
文摘Let G be a graph. G is singular if and only if the adjacency matrix of graph G is singular. The adjacency matrix of graph G is singular if and only if there is at least one zero eigenvalue. The study of the singularity of graphs is of great significance for better characterizing the properties of graphs. The following definitions are given. There are 4 paths, the starting points of the four paths are bonded into one point, and the ending point of each path is bonded to a cycle respectively, so this graph is called a kind of quadcyclic peacock graph. And in this kind of quadcyclic peacock graph assuming the number of points on the four cycles is a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, a<sub>4</sub>, and the number of points on the four paths is s<sub>1</sub>, s<sub>2</sub>, s<sub>3</sub>, s<sub>4</sub>, respectively. This type of graph is denoted by γ (a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, a<sub>4</sub>, s<sub>1</sub>, s<sub>2</sub>, s<sub>3</sub>, s<sub>4</sub>), called γ graph. And let γ (a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, a<sub>4</sub>, 1, 1, 1, 1) = δ (a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, a<sub>4</sub>), this type four cycles peacock graph called δ graph. In this paper, we give the necessary and sufficient conditions for the singularity of γ graph and δ graph.
基金Supported by the National Natural Science Foundation of China (Grant No10861009)
文摘The number of zero eigenvalues in the spectrum of the graph G is called its nullity and is denoted by η(G). In this paper, we determine the all extremal unicyclic graphs achieving the fifth upper bound n - 6 and the sixth upperbound n - 7.
文摘We called graph G non-singular if adjacency matrix A (G) of G is non-singular. A connected graph with n vertices and n-1, n and n+1 edges are called the tree, the unicyclic graph and the bicyclic graph. Respectively, as we all know, each connected bicyclic graph must contain ∞(a,s,b) or?θ(p,l,q) as the induced subgraph. In this paper, by using three graph transformations which do not change the singularity of the graph, the non-singular trees, unicyclic graphs and bicyclic graphs are obtained.
文摘The nullity of a graph is the multiplicity of the eigenvalue zero in its spectrum. In this paper we show the expression of the nullity and nullity set of unicyclic graphs with n vertices and girth r, and characterize the unicyclic graphs with extremal nullity.
文摘Let G be a graph and A=(aij)n×n be the adjacency matrix of G, the eigenvalues of A are said to be the eigenvalues of the graph G, and to form the spectrum of this graph. The numbers of positive, negative and zero eigenvalues in the spectrum of the graph G are called positive and negative inertia indexes and nullity of the graph G, are denoted by p(G), n(G), η(G), respectively, and are collectively called inertia indexes of the graph G. The inertia indexes have many important applications in chemistry and mathematics. The purpose of the research of this paper is to calculate the inertia indexes of one special kind of tricyclic graphs. A new calculation method of the inertia indexes of this tricyclic graphs with large vertices is given, and the inertia indexes of this tricyclic graphs with fewer vertices can be calculated by Matlab.
文摘Let G be a graph of order n with vertex set V(G) = {v1, v2,…, vn}. the adjacency matrix of G is an n × n matrix A(G) = (aij)n×n, where aij is the number edges joining vi and vj in G. The eigenvalues λ1, λ2, λ3,…, λn, of A(G) are said to be the eigenvalues of the graph G and to form the spectrum of this graph. The number of nonzero eigenvalues and zero eigenvalues in the spectrum of G are called rank and nullity of the graph G, and are denoted by r(G) and η(G), respectively. It follows from the definitions that r(G) + η(G) = n. In this paper, by using the operation of multiplication of vertices, a characterization for graph G with pendant vertices and r(G) = 7 is shown, and then a characterization for graph G with pendant vertices and r(G) less than or equal to 7 is shown.