计算机网络的高速发展,使处理器的速度明显低于骨干网的传输速度,这使得传统的入侵检测方法无法应用于大规模网络的检测.目前,解决这一问题的有效办法是将海量数据分割成小块数据,由分布的处理节点并行处理.这种分布式并行处理的难点是...计算机网络的高速发展,使处理器的速度明显低于骨干网的传输速度,这使得传统的入侵检测方法无法应用于大规模网络的检测.目前,解决这一问题的有效办法是将海量数据分割成小块数据,由分布的处理节点并行处理.这种分布式并行处理的难点是分割机制,为了不破坏数据的完整性,只有采用复杂的分割算法,这同时也使分割模块成为检测系统新的瓶颈.为了克服这个问题,提出了分布式神经网络学习算法,并将其用于大规模网络入侵检测.该算法的优点是,大数据集可被随机分割后分发给独立的神经网络进行并行学习,在降低分割算法复杂度的同时,保证学习结果的完整性.对该算法的测试实验首先采用基准测试数据circle-in-the-square测试了其学习能力,并与ARTMAP(adaptive resonance theory supervised predictive mapping)和BP(back propagation)神经网络进行了比较;然后采用标准的入侵检测测试数据集KDD'99 Data Set测试了其对大规模入侵的检测性能.通过与其他方法在相同数据集上的测试结果的比较表明,分布式学习算法同样具有较高的检测效率和较低的误报率.展开更多
针对当前攻击图模型中很少考虑攻击事件对所有属性节点置信度的动态影响,提出一种基于贝叶斯攻击图的动态风险评估(dynamic risk assessment based on Bayesian attack graphs,DRABAG)模型。该模型运用贝叶斯信念网络建立用于描述攻击...针对当前攻击图模型中很少考虑攻击事件对所有属性节点置信度的动态影响,提出一种基于贝叶斯攻击图的动态风险评估(dynamic risk assessment based on Bayesian attack graphs,DRABAG)模型。该模型运用贝叶斯信念网络建立用于描述攻击行为中多步原子攻击间因果关系的概率攻击图,其中,采用通用漏洞评分系统指标计算漏洞利用成功概率,并利用局部条件概率分布表评估属性节点的静态安全风险;进而结合入侵检测系统观测到的实时攻击事件,运用贝叶斯推理方法对单步攻击行为的后验概率进行动态更新,最终实现对目标网络整体安全性的评估。实验结果表明,该模型可评估动态安全风险和推断攻击路径,为实施安全防护策略提供依据。展开更多
文摘计算机网络的高速发展,使处理器的速度明显低于骨干网的传输速度,这使得传统的入侵检测方法无法应用于大规模网络的检测.目前,解决这一问题的有效办法是将海量数据分割成小块数据,由分布的处理节点并行处理.这种分布式并行处理的难点是分割机制,为了不破坏数据的完整性,只有采用复杂的分割算法,这同时也使分割模块成为检测系统新的瓶颈.为了克服这个问题,提出了分布式神经网络学习算法,并将其用于大规模网络入侵检测.该算法的优点是,大数据集可被随机分割后分发给独立的神经网络进行并行学习,在降低分割算法复杂度的同时,保证学习结果的完整性.对该算法的测试实验首先采用基准测试数据circle-in-the-square测试了其学习能力,并与ARTMAP(adaptive resonance theory supervised predictive mapping)和BP(back propagation)神经网络进行了比较;然后采用标准的入侵检测测试数据集KDD'99 Data Set测试了其对大规模入侵的检测性能.通过与其他方法在相同数据集上的测试结果的比较表明,分布式学习算法同样具有较高的检测效率和较低的误报率.
文摘针对当前攻击图模型中很少考虑攻击事件对所有属性节点置信度的动态影响,提出一种基于贝叶斯攻击图的动态风险评估(dynamic risk assessment based on Bayesian attack graphs,DRABAG)模型。该模型运用贝叶斯信念网络建立用于描述攻击行为中多步原子攻击间因果关系的概率攻击图,其中,采用通用漏洞评分系统指标计算漏洞利用成功概率,并利用局部条件概率分布表评估属性节点的静态安全风险;进而结合入侵检测系统观测到的实时攻击事件,运用贝叶斯推理方法对单步攻击行为的后验概率进行动态更新,最终实现对目标网络整体安全性的评估。实验结果表明,该模型可评估动态安全风险和推断攻击路径,为实施安全防护策略提供依据。