Abstract An adaptive dynamic surface control (DSC) scheme is proposed for the multiinput and multioutput (MIMO) attitude motion of nearspace vehicles (NSVs) in the presence of external dis turbance, system uncer...Abstract An adaptive dynamic surface control (DSC) scheme is proposed for the multiinput and multioutput (MIMO) attitude motion of nearspace vehicles (NSVs) in the presence of external dis turbance, system uncertainty and input saturation. The external disturbance and the system uncer tainty are efficiently tackled using a Nussbaum disturbance observer (NDO), and the adaptive controller is constructed by combining the dynamic surface control technique to handle the problem of "explosion of complexity" inherent in the conventional backstepping methodl For handling the input saturation, an auxiliary system is designed with the same order as that of the studied MIMO attitude system. Using the error between the saturation input and the desired control input as the input of the designed auxiliary system, a series of signals are generated to compensate for the effect of the saturation in the dynamic surface control design. It is proved that the developed control scheme can guarantee that all signals of the closedloop control system are semiglobally uniformly bounded. Finally, simulation results illustrate that the proposed control scheme can achieve satis factory tracking performance under the composite effects of the input saturation and the external disturbance.展开更多
针对低速临近空间飞行器提出了一种新型吸气式电推进方案,该方案采用单介质阻挡放电(SDBD)作为等离子体源,因此能在较大气压范围(数Pa^1atm)内电离大气产生等离子体并产生推力。为探究该吸气式电推进方案的推力性能,测量了实验样机在多...针对低速临近空间飞行器提出了一种新型吸气式电推进方案,该方案采用单介质阻挡放电(SDBD)作为等离子体源,因此能在较大气压范围(数Pa^1atm)内电离大气产生等离子体并产生推力。为探究该吸气式电推进方案的推力性能,测量了实验样机在多个气压和电压条件下产生的推力。推力测量结果显示在10~90 k Pa气压范围内,实验样机产生的推力在102~103μN量级;气压一定时,产生的推力与驱动电压呈幂次相关;而电压一定时,随着气压自1atm逐渐降低,产生的推力先增大后减小,且达到最大推力的气压与所加驱动电压相关。展开更多
基金supported by Jiangsu Natural Science Foundation(No.SBK20130033)Program for New Century Excellent Talents in University of China(No.NCET-11-0830)+2 种基金The Six Talents Peak Project of Jiangsu Province(No.2012-XXRJ-010)Aeronautical Science Foundation of China(No.20145152029)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20133218110013)
文摘Abstract An adaptive dynamic surface control (DSC) scheme is proposed for the multiinput and multioutput (MIMO) attitude motion of nearspace vehicles (NSVs) in the presence of external dis turbance, system uncertainty and input saturation. The external disturbance and the system uncer tainty are efficiently tackled using a Nussbaum disturbance observer (NDO), and the adaptive controller is constructed by combining the dynamic surface control technique to handle the problem of "explosion of complexity" inherent in the conventional backstepping methodl For handling the input saturation, an auxiliary system is designed with the same order as that of the studied MIMO attitude system. Using the error between the saturation input and the desired control input as the input of the designed auxiliary system, a series of signals are generated to compensate for the effect of the saturation in the dynamic surface control design. It is proved that the developed control scheme can guarantee that all signals of the closedloop control system are semiglobally uniformly bounded. Finally, simulation results illustrate that the proposed control scheme can achieve satis factory tracking performance under the composite effects of the input saturation and the external disturbance.
文摘针对低速临近空间飞行器提出了一种新型吸气式电推进方案,该方案采用单介质阻挡放电(SDBD)作为等离子体源,因此能在较大气压范围(数Pa^1atm)内电离大气产生等离子体并产生推力。为探究该吸气式电推进方案的推力性能,测量了实验样机在多个气压和电压条件下产生的推力。推力测量结果显示在10~90 k Pa气压范围内,实验样机产生的推力在102~103μN量级;气压一定时,产生的推力与驱动电压呈幂次相关;而电压一定时,随着气压自1atm逐渐降低,产生的推力先增大后减小,且达到最大推力的气压与所加驱动电压相关。