Based on the moving least-square (MLS) approximation, the complex variable moving least-square approximation (CVMLS) is discussed in this paper. The complex variable moving least-square approximation cannot form ill-c...Based on the moving least-square (MLS) approximation, the complex variable moving least-square approximation (CVMLS) is discussed in this paper. The complex variable moving least-square approximation cannot form ill-conditioned equations, and has greater precision and computational efficiency. Using the analytical solution near the tip of a crack, the trial functions in the complex variable moving least-square approxi- mation are extended, and the corresponding approximation function is obtained. And from the minimum potential energy principle, a complex variable meshless method for fracture problems is presented, and the formulae of the complex variable meshless method are obtained. The complex variable meshless method in this paper has greater precision and computational efficiency than the conventional meshless method. Some examples are given.展开更多
The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system, and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an ...The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system, and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an orthogonal function system mixed a weight function is defined. Next the improved moving least-square approximation is discussed in detail. The improved method has higher computational efficiency and precision than the old method, and cannot form an ill-conditioned equation system. A boundary element-free method (BEFM) for elastodynamics problems is presented by combining the boundary integral equation method for elastodynamics and the improved moving least-square approximation. The boundary element-free method is a meshless method of boundary integral equation and is a direct numerical method compared with others, in which the basic unknowns are the real solutions of the nodal variables and the boundary conditions can be applied easily. The boundary element-free method has a higher computational efficiency and precision. In addition, the numerical procedure of the boundary element-free method for elastodynamics problems is presented in this paper. Finally, some numerical examples are given.展开更多
文摘Based on the moving least-square (MLS) approximation, the complex variable moving least-square approximation (CVMLS) is discussed in this paper. The complex variable moving least-square approximation cannot form ill-conditioned equations, and has greater precision and computational efficiency. Using the analytical solution near the tip of a crack, the trial functions in the complex variable moving least-square approxi- mation are extended, and the corresponding approximation function is obtained. And from the minimum potential energy principle, a complex variable meshless method for fracture problems is presented, and the formulae of the complex variable meshless method are obtained. The complex variable meshless method in this paper has greater precision and computational efficiency than the conventional meshless method. Some examples are given.
基金supported by the National Natural Science Foundation of China(Grant No.10571118)the Shanghai Leading Academic Discipline Project(Grant No.Y0103).
文摘The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system, and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an orthogonal function system mixed a weight function is defined. Next the improved moving least-square approximation is discussed in detail. The improved method has higher computational efficiency and precision than the old method, and cannot form an ill-conditioned equation system. A boundary element-free method (BEFM) for elastodynamics problems is presented by combining the boundary integral equation method for elastodynamics and the improved moving least-square approximation. The boundary element-free method is a meshless method of boundary integral equation and is a direct numerical method compared with others, in which the basic unknowns are the real solutions of the nodal variables and the boundary conditions can be applied easily. The boundary element-free method has a higher computational efficiency and precision. In addition, the numerical procedure of the boundary element-free method for elastodynamics problems is presented in this paper. Finally, some numerical examples are given.