In the problem of classification (or pattern recognition), given a set of n samples, we attempt to construct a classifier gn with a small misclassification error. It is important to study the convergence rates of th...In the problem of classification (or pattern recognition), given a set of n samples, we attempt to construct a classifier gn with a small misclassification error. It is important to study the convergence rates of the misclassification error as n tends to infinity. It is known that such a rate can't exist for the set of all distributions. In this paper we obtain the optimal convergence rates for a class of distributions L^(λ,ω) in multicategory classification and nonstandard binary classification.展开更多
Let B^pΩ,1≤Р≤∞,be the set of all bounded functions in L^p(R)which can be extended to entire unctions of exponential typeΩ. The unitbrm bounds for truncation error of Shannon sampling expansion fromlocal averag...Let B^pΩ,1≤Р≤∞,be the set of all bounded functions in L^p(R)which can be extended to entire unctions of exponential typeΩ. The unitbrm bounds for truncation error of Shannon sampling expansion fromlocal averages are obtained for functions f∈BpΩwith the decay condition f(t)≤A/t^δ,t≠0,where A and δare positive constants. Furthermore we also establish similar results for non-bandlimit functions in Besov classes with the same decay condition as above.展开更多
基金Research supported in part by NSF of China under Grants 10571010 and 10171007The work was partially done while the first author was visiting the Institute for Mathematical Sciences, National University of Singapore in 2003The visit was supported by the Institute
文摘In the problem of classification (or pattern recognition), given a set of n samples, we attempt to construct a classifier gn with a small misclassification error. It is important to study the convergence rates of the misclassification error as n tends to infinity. It is known that such a rate can't exist for the set of all distributions. In this paper we obtain the optimal convergence rates for a class of distributions L^(λ,ω) in multicategory classification and nonstandard binary classification.
基金Supported by the National Natural Science Foundation of China(Nos.61379014 and 11271199)
文摘Let B^pΩ,1≤Р≤∞,be the set of all bounded functions in L^p(R)which can be extended to entire unctions of exponential typeΩ. The unitbrm bounds for truncation error of Shannon sampling expansion fromlocal averages are obtained for functions f∈BpΩwith the decay condition f(t)≤A/t^δ,t≠0,where A and δare positive constants. Furthermore we also establish similar results for non-bandlimit functions in Besov classes with the same decay condition as above.