The basic reproduction number of an infectious agent is the average number of infections one case can generate over the course of the infectious period,in a naïve,uninfected population.It is well-known that the e...The basic reproduction number of an infectious agent is the average number of infections one case can generate over the course of the infectious period,in a naïve,uninfected population.It is well-known that the estimation of this number may vary due to several methodological issues,including different assumptions and choice of parameters,utilized models,used datasets and estimation period.With the spreading of the novel coronavirus(2019-nCoV)infection,the reproduction number has been found to vary,reflecting the dynamics of transmission of the coronavirus outbreak as well as the case reporting rate.Due to significant variations in the control strategies,which have been changing over time,and thanks to the introduction of detection technologies that have been rapidly improved,enabling to shorten the time from infection/symptoms onset to diagnosis,leading to faster confirmation of the new coronavirus cases,our previous estimations on the transmission risk of the 2019-nCoV need to be revised.By using time-dependent contact and diagnose rates,we refit our previously proposed dynamics transmission model to the data available until January 29th,2020 and re-estimated the effective daily reproduction ratio that better quantifies the evolution of the interventions.We estimated when the effective daily reproduction ratio has fallen below 1 and when the epidemics will peak.Our updated findings suggest that the best measure is persistent and strict self-isolation.The epidemics will continue to grow,and can peak soon with the peak time depending highly on the public health interventions practically implemented.展开更多
Background:As reported by the World Health Organization,a novel coronavirus(2019-nCoV)was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January,2020.The virus was...Background:As reported by the World Health Organization,a novel coronavirus(2019-nCoV)was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January,2020.The virus was named as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)by International Committee on Taxonomy of Viruses on 11 February,2020.This study aimed to develop a mathematical model for calculating the transmissibility of the virus.Methods:In this study,we developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source(probably be bats)to the human infection.Since the Bats-HostsReservoir network was hard to explore clearly and public concerns were focusing on the transmission from Huanan Seafood Wholesale Market(reservoir)to people,we simplified the model as Reservoir-People(RP)transmission network model.The next generation matrix approach was adopted to calculate the basic reproduction number(R0)from the RP model to assess the transmissibility of the SARS-CoV-2.Results:The value of R0 was estimated of 2.30 from reservoir to person and 3.58 from person to person which means that the expected number of secondary infections that result from introducing a single infected individual into an otherwise susceptible population was 3.58.Conclusions:Our model showed that the transmissibility of SARS-CoV-2 was higher than the Middle East respiratory syndrome in the Middle East countries,similar to severe acute respiratory syndrome,but lower than MERS in the Republic of Korea.展开更多
This paper presents a systematic analysis of DC voltage stability of a multi-terminal VSC-HVDC(MTDC)system,with the emphasis on a comparative study of the most ubiquitous droop control configurations.The paper introdu...This paper presents a systematic analysis of DC voltage stability of a multi-terminal VSC-HVDC(MTDC)system,with the emphasis on a comparative study of the most ubiquitous droop control configurations.The paper introduces a general framework for the analysis of various droop control configurations employed in MTDC systems.This framework is then used to compare leading droop control configurations in terms of their impact on the relative stability,performance and robustness of the overall MTDC system.A generalized analytical MTDC model that contains detailed models of AC and DC system components is derived.Limitations imposed by DC power flow,DC inductor,cable modeling and AC network impedance on DC system stability are identified.Classical and multivariable frequency response analysis and eigenvalue analysis are applied to open-loop and closed-loop models to compare the stability and robustness of five leading droop controllers,with the focus on feedback signal selection and controller parameterization.This paper also proposes an active stabilizing controller,which takes the form of a modified constant power control,to enhance the controllability and robustness of the DC voltage control.展开更多
Four assessment methods (two pollution indexes and two fuzzy mathematical models) were employed to investigate the environmental quality of four soils around a ferroalloy plant in Nanjing City. Environmental quality...Four assessment methods (two pollution indexes and two fuzzy mathematical models) were employed to investigate the environmental quality of four soils around a ferroalloy plant in Nanjing City. Environmental quality was assessed as class Ⅳ (moderately polluted) for each soil with single-factor index method, and was identified to be classes Ⅳ, Ⅲ (slightly polluted), Ⅲ, and Ⅲ for soils A, B, C, and D, respectively, with the comprehensive index model. In comparison with the single-factor index method, the comprehensive index model concerned both dominant parameter and average contribution of all factors to the integrated environmental quality. Using the two fuzzy mathematical methods (single-factor deciding and weighted average models), the environmental risks were determined to be classes Ⅳ, Ⅲ, Ⅱ (clean), and Ⅱ for soils A, B, C, and D, respectively. However, divergence of the membership degree to each pollution class still occurred between the two methods. In fuzzy mathematical methods, membership functions were used to describe the limits between different pollution degrees, and different weights were allocated for the factors according to pollution contribution. Introduction of membership degree and weight of each factor to fuzzy mathematical models made the methods more reasonable in the field of environmental risk assessment.展开更多
Over the past decade,traditional Chinese medicine(TCM) has widely embraced systems biology and its various data integration approaches to promote its modernization.Thus,integrative pharmacology-based traditional Chine...Over the past decade,traditional Chinese medicine(TCM) has widely embraced systems biology and its various data integration approaches to promote its modernization.Thus,integrative pharmacology-based traditional Chinese medicine(TCMIP) was proposed as a paradigm shift in TCM.This review focuses on the presentation of this novel concept and the main research contents,methodologies and applications of TCMIP.First,TCMIP is an interdisciplinary science that can establish qualitative and quantitative pharmacokinetics-pharmacodynamics(PK-PD) correlations through the integration of knowledge from multiple disciplines and techniques and from different PK-PD processes in vivo.Then,the main research contents of TCMIP are introduced as follows:chemical and ADME/PK profiles of TCM formulas;confirming the three forms of active substances and the three action modes;establishing the qualitative PK-PD correlation;and building the quantitative PK-PD correlations,etc.After that,we summarize the existing data resources,computational models and experimental methods of TCMIP and highlight the urgent establishment of mathematical modeling and experimental methods.Finally,we further discuss the applications of TCMIP for the improvement of TCM quality control,clarification of the molecular mechanisms underlying the actions of TCMs and discovery of potential new drugs,especially TCM-related combination drug disco very.展开更多
The key point in the numerical simulation of breach growth and bed deformation process in dike burst is the accurate computation of flow and sediment transport. A numerical model for horizontal 2-D non-uniform sedimen...The key point in the numerical simulation of breach growth and bed deformation process in dike burst is the accurate computation of flow and sediment transport. A numerical model for horizontal 2-D non-uniform sediment was developed to simulate the bed deformation process in the dike burst. The first-order scheme was used in computation. Several simulated results were worked out to demonstrate the applicability of the numerical model.展开更多
By using mathematical reasoning, this paper demonstrates the mathematical intervening principle: “Virtual disease is to fill his mother but real disease is to rush down his son” (虚则补其母, 实则泄其子) and “Strong...By using mathematical reasoning, this paper demonstrates the mathematical intervening principle: “Virtual disease is to fill his mother but real disease is to rush down his son” (虚则补其母, 实则泄其子) and “Strong inhibition of the same time, support the weak” (抑强扶弱) based on “Yin Yang Wu Xing” Theory in image mathematics of Traditional Chinese Mathematics (TCMath). We defined generalized relations and generalized reasoning, introduced the concept of steady multilateral systems with two non-compatibility relations, and discussed its energy properties. Later based on the intervention principle in image mathematics of TCMath and treated the research object of the image mathematics as a steady multilateral system, it has been proved that the mathematical intervening principle is true. The kernel of this paper is the existence and reasoning of the non-compatibility relations in steady multilateral systems, and it accords with the oriental thinking model.展开更多
In this paper, a mathematical model for the urban rainstorm water logging wasestablished on the basis of one- and two-dimensional unsteady flow theory and the technique ofnon-structural irregular grid division. The co...In this paper, a mathematical model for the urban rainstorm water logging wasestablished on the basis of one- and two-dimensional unsteady flow theory and the technique ofnon-structural irregular grid division. The continuity equation was discretized with the finitevolume method. And the momentum equations were differently simplified and discretized for differentcases. A method of ''special passage'' was proposed to deal with small-scale rivers and open channels.The urban drainage system was simplified and simulated in the model. The method of ''open slot'' wasapplied to coordinate the alternate calculation of open channel flow and pressure flow in drainagepipes. The model has been applied in Tianjin City and the verification is quite satisfactory.展开更多
A mathematical model, including electromagnetic field equation, fluid flow equation, and temperature field equation, was established for the simulation of the electroslag remelting process. The distribution of tempera...A mathematical model, including electromagnetic field equation, fluid flow equation, and temperature field equation, was established for the simulation of the electroslag remelting process. The distribution of temperature field was obtained by solving this model. The relationship between the local solidification time and the interdendritic spacing during the ingot solidification process was established, which has been regarded as a criterion for the evaluation of the quality of crystallization. For a crucible of 950 mm in diameter, the local solidification time is more than 1 h at the center of the ingot with the longest interdendritic spacing, whereas it is the shortest at the edge of the ingot according to the calculated results. The model can be used to understand the ESR process and to predict the ingot quality.展开更多
Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S)...Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.展开更多
Reduction of drag torque is one of important potentials to improve transmission efficiency.Existing mathematical model of drag torque was not accurate to predict the decrease after oil film shrinking because of the di...Reduction of drag torque is one of important potentials to improve transmission efficiency.Existing mathematical model of drag torque was not accurate to predict the decrease after oil film shrinking because of the difficulty in modeling the flow pattern between two plates.Flow pattern was considered as laminar flow and full oil film in the gap between two plates in traditional model.Subsequent equivalent circumferential degree model presented an improvement in oil film shrinking due to centrifugal force,but was also based on full oil film in the gap,which resulted difference between model prediction and experimental data.The objective of this paper is to develop an accurate mathematical model for the above problem by using experimental verification.An experimental apparatus was set up to test drag torque of disengaged wet clutch consisting of single friction and separate plate.A high speed camera was used to record the flow pattern through transparent quartz disk plate.The visualization of flow pattern in the clearance was investigated to evaluate the characteristics of oil film shrinking.Visual test results reveal that the oil film begins to shrink from outer radius to inner radius at the stationary plate and only flows along the rotating plate after shrinking.Meanwhile,drag torque decreases sharply due to little contact area between the stationary plate and the oil.A three-dimensional Navier-Stokes (N-S) equation based on laminar flow is presented to model the drag torque.Pressure distributions in radial and circumferential directions as well as speed distributions are deduced.The model analysis reveals that the acceleration of flow in radial direction caused by centrifugal force is the key reason for the shrinking at the constant feeding flow rate.An approach to descript flow pattern was presented on the basis of visual observation.The drag torque predicted by the model agrees well with test data for non-grooved wet clutch.The proposed model enhances the precision for predicting drag torque,and lays down 展开更多
In this study, the combined actions of waves and tidal currents in estuarine and coastal areas are considered and a 2D mathematical model for sediment transport by waves and tidal currents has been established in orth...In this study, the combined actions of waves and tidal currents in estuarine and coastal areas are considered and a 2D mathematical model for sediment transport by waves and tidal currents has been established in orthogonal curvilinear coordinates. Non-equilibrium transport equations of suspended load and bed load are used in the model. The concept of background concentration is introduced, and the formula of sediment transport capacity of tidal currents for the Oujiang River estuary is obtained. The Dou Guoren formula is employed for the sediment transport capacity of waves. Sediment transport capacity in the form of mud and the intensity of back silting are calculated by use of Luo Zaosen' s formula. The calculated tidal stages are in good agreement with the field data, and the calculated velocities and flow directions of 46 vertical lines for 8 cross sections are also in good agreement with the measured data. On such a basis, simulations of back silting after excavation of the waterway with a sand bar under complicated boundary conditions in the navigation channel induced by suspended load, bed load and mud by waves and tidal currents are discussed.展开更多
Three-dimensional numerical manifold method for unconfined seepage analysis is proposed in this article.By constructing hydraulic potential functions of the manifold element,the element conductivity matrix and the glo...Three-dimensional numerical manifold method for unconfined seepage analysis is proposed in this article.By constructing hydraulic potential functions of the manifold element,the element conductivity matrix and the global simultaneous equations for unconfined seepage analysis are derived in detail.The algorithm of locating the free surface and the formula for seepage forces are also given.Three-dimensional manifold method employs the tetrahedral mathematical meshes to cover the whole material volume.In the iterative process for locating the free surface,the manifold method can achieve an accurate seepage analysis of the saturated domain below the free surface with mathematical meshes unchanged.Since the shape of manifold elements can be arbitrary,the disadvantage of changing the permeability of transitional elements cut by the free surface in the conventional Finite Element Method(FEM) is removed,and the accuracy of locating the free surface can be ensured.Furthermore,the seepage force acting on the transitional elements can be accurately calculated by the simplex integration.Numerical results for a typical example demonstrate the validity of the proposed method.展开更多
Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical...Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical model for the dynamic-thermo-hydro-mechanical coupling of a non-local thermal equilibrium fuid-saturated porous medium, in which the two constituents are assumed to be incompressible and immiscible, is established under the assumption of small de- formation of the solid phase, small velocity of the fuid phase and small temperature changes of the two constituents. The mathematical model of a local thermal equilibrium fuid-saturated porous medium can be obtained directly from the above one. Several Gurtin-type variational principles, especially Hu-Washizu type variational principles, for the initial boundary value problems of dy- namic and quasi-static responses are presented. It should be pointed out that these variational principles can be degenerated easily into the case of isothermal incompressible fuid-saturated elastic porous media, which have been discussed previously.展开更多
Based on the structure of a certain type of aviation axial-piston pump's valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice) to reduce flow ripple,...Based on the structure of a certain type of aviation axial-piston pump's valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice) to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This sin- gle-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used in the single-piston model have been calculated in detail. Based on the single-piston model, a multi-piston pump model has been established according to the simple hydraulic circuit. The sin- gle- and multi-piston pump models have been realized by the S-function in Matlab/Simulink. The developed multi-piston pump model has been validated by being compared with the numerical result by computational fluid dynamic (CFD). The effects of the pre-pressurization fluid path on the flow ripple and the instantaneous pressure in the piston chamber have been studied and opti- mized design recommendations for the aviation axial-piston pump have been given out.展开更多
An experimental study was performed to determine the characteristics and drying process of mushroom (Lentinus edodes) by 6 different hot-air drying methods namely isothermal drying, uniform raise drying, non-uniform...An experimental study was performed to determine the characteristics and drying process of mushroom (Lentinus edodes) by 6 different hot-air drying methods namely isothermal drying, uniform raise drying, non-uniform raise drying, uniform intermittent drying, non-uniform intermittent drying and combined drying. The chemical composition (dry matter, ash, crude protein, crude fat, total sugars, dietary fiber, and energy), color parameters (L, a*, b*, c*, and h~) and rehydration capacities were determined. Among all the experiments, non-uniform intermittent drying reached a better comprehensive results due to the higher chemical composition, better color quality associated with high bright (26.381+5.842), high color tone (73.670+2.975), low chroma (13.349a:3.456) as well as the highest rehydration (453.76% weigh of dried body). Nine kinds of classical mathematical model were used to obtained moisture data and the Midili-kucuk model can be described by the drying process with the coefficient (R2 ranged from 0.99790 to 0.99967), chi-square (X2 ranged from 0.00003 to 0.00019) and root mean square error (RMSE ranged from 0.000486 to 0.0012367).展开更多
In this paper, a modified temperature-phase transformation-stress/strain field coupled 3D non-linear mathematical model was used in the computer simulation on heat treatment processes of workpieces including catch jaw...In this paper, a modified temperature-phase transformation-stress/strain field coupled 3D non-linear mathematical model was used in the computer simulation on heat treatment processes of workpieces including catch jaw, anchor ring, cold roller, large-scale bearing roller, nitriding crank shaft, etc. The simulation on complicated technologies such as pre-cooled quenching, double media quenching, self-tempering, difference temperature heating, nitriding distortion was carried out. The optimum design of heat treatment technology has been realized. The successful application of computer simulation on heat treatment have also been demonstrated.展开更多
According to the characteristics of comprehensive mechanized heading face, established the mathematical model of single-phase air flow with κ-ε two equations model, and have established κ-ε-θ-κp mathematic model...According to the characteristics of comprehensive mechanized heading face, established the mathematical model of single-phase air flow with κ-ε two equations model, and have established κ-ε-θ-κp mathematic model to solve two-phase flow of gas and particles in dust space with eulerian-eulerian method and eulerian-lagrangian method. Numerical solution of gas-particle two-phase flow was put forward based on collocated grid SIMPLE algorithm. Moreover, numerical simulation of dust concentration in fully mechanized caving face was carded out by using Fluent software. Finally, when in forced-exhaust ventilation circumstance, drawer type fan drum have less dust absorption, and most of dust spread to the other site; the dust concentration is inversely proportional to the distance from tunneling head, and the dust concentration has already diffused to decrease below 102 mg/m3 at the position ofx=12 m. Dust are more focused on relative side(in the range about y from 0 to 2 meter) of roadway space of press-ventilated fan drum, especially between tunneling place and drawer type fan drum; the roadway with road header have a higher dust concentration. These conclusions provide reliable theory basis for the dust prevention in comprehensive mechanized heading face.展开更多
基金This research was funded by the National Natural Science Foundation of China(grant numbers:11631012(YX,ST),61772017(ST))by the Canada Research Chair Program(grant number:230720(JW)the Natural Sciences and Engineering Research Council of Canada(Grant number:105588-2011(JW).
文摘The basic reproduction number of an infectious agent is the average number of infections one case can generate over the course of the infectious period,in a naïve,uninfected population.It is well-known that the estimation of this number may vary due to several methodological issues,including different assumptions and choice of parameters,utilized models,used datasets and estimation period.With the spreading of the novel coronavirus(2019-nCoV)infection,the reproduction number has been found to vary,reflecting the dynamics of transmission of the coronavirus outbreak as well as the case reporting rate.Due to significant variations in the control strategies,which have been changing over time,and thanks to the introduction of detection technologies that have been rapidly improved,enabling to shorten the time from infection/symptoms onset to diagnosis,leading to faster confirmation of the new coronavirus cases,our previous estimations on the transmission risk of the 2019-nCoV need to be revised.By using time-dependent contact and diagnose rates,we refit our previously proposed dynamics transmission model to the data available until January 29th,2020 and re-estimated the effective daily reproduction ratio that better quantifies the evolution of the interventions.We estimated when the effective daily reproduction ratio has fallen below 1 and when the epidemics will peak.Our updated findings suggest that the best measure is persistent and strict self-isolation.The epidemics will continue to grow,and can peak soon with the peak time depending highly on the public health interventions practically implemented.
基金This study was supported by Xiamen New Coronavirus Prevention and Control Emergency Tackling Special Topic Program(No:3502Z2020YJ03).
文摘Background:As reported by the World Health Organization,a novel coronavirus(2019-nCoV)was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January,2020.The virus was named as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)by International Committee on Taxonomy of Viruses on 11 February,2020.This study aimed to develop a mathematical model for calculating the transmissibility of the virus.Methods:In this study,we developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source(probably be bats)to the human infection.Since the Bats-HostsReservoir network was hard to explore clearly and public concerns were focusing on the transmission from Huanan Seafood Wholesale Market(reservoir)to people,we simplified the model as Reservoir-People(RP)transmission network model.The next generation matrix approach was adopted to calculate the basic reproduction number(R0)from the RP model to assess the transmissibility of the SARS-CoV-2.Results:The value of R0 was estimated of 2.30 from reservoir to person and 3.58 from person to person which means that the expected number of secondary infections that result from introducing a single infected individual into an otherwise susceptible population was 3.58.Conclusions:Our model showed that the transmissibility of SARS-CoV-2 was higher than the Middle East respiratory syndrome in the Middle East countries,similar to severe acute respiratory syndrome,but lower than MERS in the Republic of Korea.
基金This work was supported by the UK Engineering and Physical Science Council Project(EP/L102463/1).
文摘This paper presents a systematic analysis of DC voltage stability of a multi-terminal VSC-HVDC(MTDC)system,with the emphasis on a comparative study of the most ubiquitous droop control configurations.The paper introduces a general framework for the analysis of various droop control configurations employed in MTDC systems.This framework is then used to compare leading droop control configurations in terms of their impact on the relative stability,performance and robustness of the overall MTDC system.A generalized analytical MTDC model that contains detailed models of AC and DC system components is derived.Limitations imposed by DC power flow,DC inductor,cable modeling and AC network impedance on DC system stability are identified.Classical and multivariable frequency response analysis and eigenvalue analysis are applied to open-loop and closed-loop models to compare the stability and robustness of five leading droop controllers,with the focus on feedback signal selection and controller parameterization.This paper also proposes an active stabilizing controller,which takes the form of a modified constant power control,to enhance the controllability and robustness of the DC voltage control.
基金the PhD Fund of the National Education Ministry of China (No20030284038)the Interna-tional Foundation for Science (NoW/4215)
文摘Four assessment methods (two pollution indexes and two fuzzy mathematical models) were employed to investigate the environmental quality of four soils around a ferroalloy plant in Nanjing City. Environmental quality was assessed as class Ⅳ (moderately polluted) for each soil with single-factor index method, and was identified to be classes Ⅳ, Ⅲ (slightly polluted), Ⅲ, and Ⅲ for soils A, B, C, and D, respectively, with the comprehensive index model. In comparison with the single-factor index method, the comprehensive index model concerned both dominant parameter and average contribution of all factors to the integrated environmental quality. Using the two fuzzy mathematical methods (single-factor deciding and weighted average models), the environmental risks were determined to be classes Ⅳ, Ⅲ, Ⅱ (clean), and Ⅱ for soils A, B, C, and D, respectively. However, divergence of the membership degree to each pollution class still occurred between the two methods. In fuzzy mathematical methods, membership functions were used to describe the limits between different pollution degrees, and different weights were allocated for the factors according to pollution contribution. Introduction of membership degree and weight of each factor to fuzzy mathematical models made the methods more reasonable in the field of environmental risk assessment.
基金supported by grants from the National Natural Science Foundation of China (Grant Nos. 81830111 and 81774201)National Key Research and Development Program of China (2017YFC1702104 and 2017YFC1702303)+2 种基金the Youth Innovation Team of Shaanxi Universities and Shaanxi Provincial Science and Technology Department Project (No. 2016SF-378, China)the Fundamental Research Funds for the Central public Welfare Research Institutes (ZXKT17058, China)the National Science and Technology Major Project of China (2019ZX09201005-001-003)。
文摘Over the past decade,traditional Chinese medicine(TCM) has widely embraced systems biology and its various data integration approaches to promote its modernization.Thus,integrative pharmacology-based traditional Chinese medicine(TCMIP) was proposed as a paradigm shift in TCM.This review focuses on the presentation of this novel concept and the main research contents,methodologies and applications of TCMIP.First,TCMIP is an interdisciplinary science that can establish qualitative and quantitative pharmacokinetics-pharmacodynamics(PK-PD) correlations through the integration of knowledge from multiple disciplines and techniques and from different PK-PD processes in vivo.Then,the main research contents of TCMIP are introduced as follows:chemical and ADME/PK profiles of TCM formulas;confirming the three forms of active substances and the three action modes;establishing the qualitative PK-PD correlation;and building the quantitative PK-PD correlations,etc.After that,we summarize the existing data resources,computational models and experimental methods of TCMIP and highlight the urgent establishment of mathematical modeling and experimental methods.Finally,we further discuss the applications of TCMIP for the improvement of TCM quality control,clarification of the molecular mechanisms underlying the actions of TCMs and discovery of potential new drugs,especially TCM-related combination drug disco very.
文摘The key point in the numerical simulation of breach growth and bed deformation process in dike burst is the accurate computation of flow and sediment transport. A numerical model for horizontal 2-D non-uniform sediment was developed to simulate the bed deformation process in the dike burst. The first-order scheme was used in computation. Several simulated results were worked out to demonstrate the applicability of the numerical model.
文摘By using mathematical reasoning, this paper demonstrates the mathematical intervening principle: “Virtual disease is to fill his mother but real disease is to rush down his son” (虚则补其母, 实则泄其子) and “Strong inhibition of the same time, support the weak” (抑强扶弱) based on “Yin Yang Wu Xing” Theory in image mathematics of Traditional Chinese Mathematics (TCMath). We defined generalized relations and generalized reasoning, introduced the concept of steady multilateral systems with two non-compatibility relations, and discussed its energy properties. Later based on the intervention principle in image mathematics of TCMath and treated the research object of the image mathematics as a steady multilateral system, it has been proved that the mathematical intervening principle is true. The kernel of this paper is the existence and reasoning of the non-compatibility relations in steady multilateral systems, and it accords with the oriental thinking model.
文摘In this paper, a mathematical model for the urban rainstorm water logging wasestablished on the basis of one- and two-dimensional unsteady flow theory and the technique ofnon-structural irregular grid division. The continuity equation was discretized with the finitevolume method. And the momentum equations were differently simplified and discretized for differentcases. A method of ''special passage'' was proposed to deal with small-scale rivers and open channels.The urban drainage system was simplified and simulated in the model. The method of ''open slot'' wasapplied to coordinate the alternate calculation of open channel flow and pressure flow in drainagepipes. The model has been applied in Tianjin City and the verification is quite satisfactory.
基金Item Sponsored by Weaponry Pre-Research Fund (51412020304QT0901)
文摘A mathematical model, including electromagnetic field equation, fluid flow equation, and temperature field equation, was established for the simulation of the electroslag remelting process. The distribution of temperature field was obtained by solving this model. The relationship between the local solidification time and the interdendritic spacing during the ingot solidification process was established, which has been regarded as a criterion for the evaluation of the quality of crystallization. For a crucible of 950 mm in diameter, the local solidification time is more than 1 h at the center of the ingot with the longest interdendritic spacing, whereas it is the shortest at the edge of the ingot according to the calculated results. The model can be used to understand the ESR process and to predict the ingot quality.
基金supported by National Defense Arming Pre-researching Project(Grant No. 40402060102)
文摘Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.
基金supported by National Defense Arming Pre-researching Project of China(Grant No.40402060102)
文摘Reduction of drag torque is one of important potentials to improve transmission efficiency.Existing mathematical model of drag torque was not accurate to predict the decrease after oil film shrinking because of the difficulty in modeling the flow pattern between two plates.Flow pattern was considered as laminar flow and full oil film in the gap between two plates in traditional model.Subsequent equivalent circumferential degree model presented an improvement in oil film shrinking due to centrifugal force,but was also based on full oil film in the gap,which resulted difference between model prediction and experimental data.The objective of this paper is to develop an accurate mathematical model for the above problem by using experimental verification.An experimental apparatus was set up to test drag torque of disengaged wet clutch consisting of single friction and separate plate.A high speed camera was used to record the flow pattern through transparent quartz disk plate.The visualization of flow pattern in the clearance was investigated to evaluate the characteristics of oil film shrinking.Visual test results reveal that the oil film begins to shrink from outer radius to inner radius at the stationary plate and only flows along the rotating plate after shrinking.Meanwhile,drag torque decreases sharply due to little contact area between the stationary plate and the oil.A three-dimensional Navier-Stokes (N-S) equation based on laminar flow is presented to model the drag torque.Pressure distributions in radial and circumferential directions as well as speed distributions are deduced.The model analysis reveals that the acceleration of flow in radial direction caused by centrifugal force is the key reason for the shrinking at the constant feeding flow rate.An approach to descript flow pattern was presented on the basis of visual observation.The drag torque predicted by the model agrees well with test data for non-grooved wet clutch.The proposed model enhances the precision for predicting drag torque,and lays down
基金This work was supported bythe National Basic Research Program(973) of China (Grant No.2003CB415206) andthe National Natural Science Foundation of China (Grant No.50379027 and No.50479004)
文摘In this study, the combined actions of waves and tidal currents in estuarine and coastal areas are considered and a 2D mathematical model for sediment transport by waves and tidal currents has been established in orthogonal curvilinear coordinates. Non-equilibrium transport equations of suspended load and bed load are used in the model. The concept of background concentration is introduced, and the formula of sediment transport capacity of tidal currents for the Oujiang River estuary is obtained. The Dou Guoren formula is employed for the sediment transport capacity of waves. Sediment transport capacity in the form of mud and the intensity of back silting are calculated by use of Luo Zaosen' s formula. The calculated tidal stages are in good agreement with the field data, and the calculated velocities and flow directions of 46 vertical lines for 8 cross sections are also in good agreement with the measured data. On such a basis, simulations of back silting after excavation of the waterway with a sand bar under complicated boundary conditions in the navigation channel induced by suspended load, bed load and mud by waves and tidal currents are discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50725931, 50839004)the Ministry of Education of China for New Century Excellent Talents in University (Grant No. NCET-07-0632)
文摘Three-dimensional numerical manifold method for unconfined seepage analysis is proposed in this article.By constructing hydraulic potential functions of the manifold element,the element conductivity matrix and the global simultaneous equations for unconfined seepage analysis are derived in detail.The algorithm of locating the free surface and the formula for seepage forces are also given.Three-dimensional manifold method employs the tetrahedral mathematical meshes to cover the whole material volume.In the iterative process for locating the free surface,the manifold method can achieve an accurate seepage analysis of the saturated domain below the free surface with mathematical meshes unchanged.Since the shape of manifold elements can be arbitrary,the disadvantage of changing the permeability of transitional elements cut by the free surface in the conventional Finite Element Method(FEM) is removed,and the accuracy of locating the free surface can be ensured.Furthermore,the seepage force acting on the transitional elements can be accurately calculated by the simplex integration.Numerical results for a typical example demonstrate the validity of the proposed method.
基金Project supported by the National Natural Science Foundation of China(No.10272070)and the Development Foun-dation of the Education Commission of Shanghai,China.
文摘Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical model for the dynamic-thermo-hydro-mechanical coupling of a non-local thermal equilibrium fuid-saturated porous medium, in which the two constituents are assumed to be incompressible and immiscible, is established under the assumption of small de- formation of the solid phase, small velocity of the fuid phase and small temperature changes of the two constituents. The mathematical model of a local thermal equilibrium fuid-saturated porous medium can be obtained directly from the above one. Several Gurtin-type variational principles, especially Hu-Washizu type variational principles, for the initial boundary value problems of dy- namic and quasi-static responses are presented. It should be pointed out that these variational principles can be degenerated easily into the case of isothermal incompressible fuid-saturated elastic porous media, which have been discussed previously.
基金the support of the National Natural Science Foundation of China (No. 51235002)the National Science Foundation for Distinguished Young Scholars (No. 50825502)
文摘Based on the structure of a certain type of aviation axial-piston pump's valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice) to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This sin- gle-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used in the single-piston model have been calculated in detail. Based on the single-piston model, a multi-piston pump model has been established according to the simple hydraulic circuit. The sin- gle- and multi-piston pump models have been realized by the S-function in Matlab/Simulink. The developed multi-piston pump model has been validated by being compared with the numerical result by computational fluid dynamic (CFD). The effects of the pre-pressurization fluid path on the flow ripple and the instantaneous pressure in the piston chamber have been studied and opti- mized design recommendations for the aviation axial-piston pump have been given out.
基金supported by the National High-Tech R&D Program of China(863 Program,2011AA100805-2)the Project from Chongqing Science and Technology Committee(CSTC2011AC1010)supported by the National Natural Science Foundation of China(31271825)
文摘An experimental study was performed to determine the characteristics and drying process of mushroom (Lentinus edodes) by 6 different hot-air drying methods namely isothermal drying, uniform raise drying, non-uniform raise drying, uniform intermittent drying, non-uniform intermittent drying and combined drying. The chemical composition (dry matter, ash, crude protein, crude fat, total sugars, dietary fiber, and energy), color parameters (L, a*, b*, c*, and h~) and rehydration capacities were determined. Among all the experiments, non-uniform intermittent drying reached a better comprehensive results due to the higher chemical composition, better color quality associated with high bright (26.381+5.842), high color tone (73.670+2.975), low chroma (13.349a:3.456) as well as the highest rehydration (453.76% weigh of dried body). Nine kinds of classical mathematical model were used to obtained moisture data and the Midili-kucuk model can be described by the drying process with the coefficient (R2 ranged from 0.99790 to 0.99967), chi-square (X2 ranged from 0.00003 to 0.00019) and root mean square error (RMSE ranged from 0.000486 to 0.0012367).
文摘In this paper, a modified temperature-phase transformation-stress/strain field coupled 3D non-linear mathematical model was used in the computer simulation on heat treatment processes of workpieces including catch jaw, anchor ring, cold roller, large-scale bearing roller, nitriding crank shaft, etc. The simulation on complicated technologies such as pre-cooled quenching, double media quenching, self-tempering, difference temperature heating, nitriding distortion was carried out. The optimum design of heat treatment technology has been realized. The successful application of computer simulation on heat treatment have also been demonstrated.
基金Supported by the National Natural Science Foundation of China (51074100) the National Natural Science Foundation of Shan dong province (ZR2OIOEM016)
文摘According to the characteristics of comprehensive mechanized heading face, established the mathematical model of single-phase air flow with κ-ε two equations model, and have established κ-ε-θ-κp mathematic model to solve two-phase flow of gas and particles in dust space with eulerian-eulerian method and eulerian-lagrangian method. Numerical solution of gas-particle two-phase flow was put forward based on collocated grid SIMPLE algorithm. Moreover, numerical simulation of dust concentration in fully mechanized caving face was carded out by using Fluent software. Finally, when in forced-exhaust ventilation circumstance, drawer type fan drum have less dust absorption, and most of dust spread to the other site; the dust concentration is inversely proportional to the distance from tunneling head, and the dust concentration has already diffused to decrease below 102 mg/m3 at the position ofx=12 m. Dust are more focused on relative side(in the range about y from 0 to 2 meter) of roadway space of press-ventilated fan drum, especially between tunneling place and drawer type fan drum; the roadway with road header have a higher dust concentration. These conclusions provide reliable theory basis for the dust prevention in comprehensive mechanized heading face.