Based on the compilation and analysis of the lithofacies and paleogeography distribution maps at present and paleoplate locations during six key geological periods of the Mesozoic and Cenozoic,the lithofacies and pale...Based on the compilation and analysis of the lithofacies and paleogeography distribution maps at present and paleoplate locations during six key geological periods of the Mesozoic and Cenozoic,the lithofacies and paleogeography features and their development laws were expounded.Based on our previous research results on lithofacies and paleogeography from Precambrian to Paleozoic,we systematically studied the features and evolution laws of global lithofacies and paleogeography from the Precambrian and their effects on the formation of source rocks,reservoirs,cap rocks and the distribution of oil and gas worldwide.The results show that since Precambrian,the distribution areas of uplift erosion and terrestrial clastic deposition tended to increase gradually,and increased significantly during the period of continental growth.The scale of coastal and shallow marine facies area had three distinct cycles,namely,from Precambrian to Devonian,from Carboniferous to Triassic,and from Jurassic to Neogene.Correspondingly,the development of shallow carbonate platform also showed three cycles;the lacustrine facies onshore was relatively developed in Mesozoic and Cenozoic;the sabkha was mainly developed in the Devonian,Permian and Triassic.The Cretaceous is the most important source rock layers in the world,followed by the Jurassic and Paleogene source rocks;the clastic reservoirs have more oil and gas than the carbonate reservoirs;the basins with shale caprocks have the widest distribution,the most abundant reserves of oil and gas,and the evaporite caprocks have the strongest sealing capacity,which can seal some huge oil and gas fields.展开更多
By using a large amount of geological and geophysical data, the geological characteristics such as lithofacies and paleogeography of 4981 geological units at thirteen key geological periods or epoches since the Precam...By using a large amount of geological and geophysical data, the geological characteristics such as lithofacies and paleogeography of 4981 geological units at thirteen key geological periods or epoches since the Precambrian in the world have been figured out. The global lithofacies and paleogeography charts have been compiled by ArcGis mapping technology. Combined with the results of plate-paleogeography reconstruction, the lithofacies and paleogeography as well as the prototype basins of these global paleoplates have been restored with the Gplate software. Results show that there are 22 kinds of lithofacies combinations and 10 types of paleogeography units developed since Precambrian. These features of lithofacies and paleogeography as well as their evolution were mainly controlled by the divergent and convergent movements of those plates. Taking the results of the lithofacis and paleogeography at the present and paleoplate location during the seven key geological periods from the Precambrian to Paleozoic for example, during the Late Precambrian and Cambrian, the large-scale disintegration of the Rodinia supercontinent resulted in reduction of uplift denudation area and clastic terrestrial facies area, the expansion of coastal-shallow marine facies and shallow-water carbonate platform. In Devonian, uplift denudation area and clastic terrestrial facies area began to increase and littoral-shallow marine facies area and shallow-water carbonate platform shrank as a result of the formation of Larussia supercontinent. In the Permian, with the formation of the Pangea continent, the development of the global uplift denudation area and clastic terrestrial facies reached its peak, while the littoral and shallow marine facies were very limited in distribution. The lithofacies and paleogeography features and evolution patterns of different stages lay a solid foundation for analyzing the formation conditions of geological elements, such as source rocks, reservoirs and cap rocks for oil and gas accumulation, and revealing the 展开更多
基金Supported by the China National Science and Technology Major Project(2011ZX05028-003,2016ZX05029-001).
文摘Based on the compilation and analysis of the lithofacies and paleogeography distribution maps at present and paleoplate locations during six key geological periods of the Mesozoic and Cenozoic,the lithofacies and paleogeography features and their development laws were expounded.Based on our previous research results on lithofacies and paleogeography from Precambrian to Paleozoic,we systematically studied the features and evolution laws of global lithofacies and paleogeography from the Precambrian and their effects on the formation of source rocks,reservoirs,cap rocks and the distribution of oil and gas worldwide.The results show that since Precambrian,the distribution areas of uplift erosion and terrestrial clastic deposition tended to increase gradually,and increased significantly during the period of continental growth.The scale of coastal and shallow marine facies area had three distinct cycles,namely,from Precambrian to Devonian,from Carboniferous to Triassic,and from Jurassic to Neogene.Correspondingly,the development of shallow carbonate platform also showed three cycles;the lacustrine facies onshore was relatively developed in Mesozoic and Cenozoic;the sabkha was mainly developed in the Devonian,Permian and Triassic.The Cretaceous is the most important source rock layers in the world,followed by the Jurassic and Paleogene source rocks;the clastic reservoirs have more oil and gas than the carbonate reservoirs;the basins with shale caprocks have the widest distribution,the most abundant reserves of oil and gas,and the evaporite caprocks have the strongest sealing capacity,which can seal some huge oil and gas fields.
基金Supported by the China National Science and Technology Major Project(2011ZX05028-003,2016ZX05029-001)
文摘By using a large amount of geological and geophysical data, the geological characteristics such as lithofacies and paleogeography of 4981 geological units at thirteen key geological periods or epoches since the Precambrian in the world have been figured out. The global lithofacies and paleogeography charts have been compiled by ArcGis mapping technology. Combined with the results of plate-paleogeography reconstruction, the lithofacies and paleogeography as well as the prototype basins of these global paleoplates have been restored with the Gplate software. Results show that there are 22 kinds of lithofacies combinations and 10 types of paleogeography units developed since Precambrian. These features of lithofacies and paleogeography as well as their evolution were mainly controlled by the divergent and convergent movements of those plates. Taking the results of the lithofacis and paleogeography at the present and paleoplate location during the seven key geological periods from the Precambrian to Paleozoic for example, during the Late Precambrian and Cambrian, the large-scale disintegration of the Rodinia supercontinent resulted in reduction of uplift denudation area and clastic terrestrial facies area, the expansion of coastal-shallow marine facies and shallow-water carbonate platform. In Devonian, uplift denudation area and clastic terrestrial facies area began to increase and littoral-shallow marine facies area and shallow-water carbonate platform shrank as a result of the formation of Larussia supercontinent. In the Permian, with the formation of the Pangea continent, the development of the global uplift denudation area and clastic terrestrial facies reached its peak, while the littoral and shallow marine facies were very limited in distribution. The lithofacies and paleogeography features and evolution patterns of different stages lay a solid foundation for analyzing the formation conditions of geological elements, such as source rocks, reservoirs and cap rocks for oil and gas accumulation, and revealing the