Changes of extreme events due to greenhouse effects (2 × CO<SUB>2</SUB>) over East Asia, with a focus on the China region as simulated by a regional climate model (RegCM2), are investigated. The model...Changes of extreme events due to greenhouse effects (2 × CO<SUB>2</SUB>) over East Asia, with a focus on the China region as simulated by a regional climate model (RegCM2), are investigated. The model is nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM). Analysis of the control run of the regional model indicates that it can reproduce well the extreme events in China. Statistically significant changes of the events are analyzed. Results show that both daily maximum and daily minimum temperature increase in 2 × CO<SUB>2</SUB> conditions, while the diurnal temperature range decreases. The number of hot spell days increases while the number of cold spell days decreases. The number of rainy days and heavy rain days increases over some sub-regions of China. The 2 × CO<SUB>2</SUB> conditions also cause some changes in the tropical storms affecting China.展开更多
Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rai...Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rainfall events and severe rainfall events are discussed.Furthermore,the percentile method was used to define local hourly extreme precipitation;based on this,diurnal variations and trends in extreme precipitation were further studied.The results of this study show that,over Yunnan,South China,North China,and Northeast China,the most frequent extreme precipitation events occur most frequently in late afternoon and/or early evening.In the Guizhou Plateau and the Sichuan Basin,the maximum frequency of extreme precipitation events occurs in the late night and/or early morning.And in the western Sichuan Plateau,the maximum frequency occurs in the middle of the night.The frequency of extreme precipitation (based on hourly rainfall measurements) has increased in most parts of eastern China,especially in Northeast China and the middle and lower reaches of the Yangtze River,but precipitation has decreased significantly in North China in the past 50 years.In addition,stations in the Guizhou Plateau and the middle and lower reaches of the Yangtze River exhibit significant increasing trends in hourly precipitation extremes during the nighttime more than during the daytime.展开更多
Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random fo...Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random forest(RF)ensemble learning methods for capturing the relationships between the USS and various basic soil parameters.Based on the soil data sets from TC304 database,a general approach is developed to predict the USS of soft clays using the two machine learning methods above,where five feature variables including the preconsolidation stress(PS),vertical effective stress(VES),liquid limit(LL),plastic limit(PL)and natural water content(W)are adopted.To reduce the dependence on the rule of thumb and inefficient brute-force search,the Bayesian optimization method is applied to determine the appropriate model hyper-parameters of both XGBoost and RF.The developed models are comprehensively compared with three comparison machine learning methods and two transformation models with respect to predictive accuracy and robustness under 5-fold cross-validation(CV).It is shown that XGBoost-based and RF-based methods outperform these approaches.Besides,the XGBoostbased model provides feature importance ranks,which makes it a promising tool in the prediction of geotechnical parameters and enhances the interpretability of model.展开更多
When plate tectonics started to occur on Earth and how it has evolved through time are two of the most fundamental questions in earth sciences. While gravity-driven subducting has been accepted as a critical condition...When plate tectonics started to occur on Earth and how it has evolved through time are two of the most fundamental questions in earth sciences. While gravity-driven subducting has been accepted as a critical condition for the operation of plate tectonics on Earth, it is intriguing how the dynamic regime and thermal state of subduction zones have affected the style of plate tectonics in Earth’s history. The metamorphic rocks of regional distribution along convergent plate boundaries record reworking of crustal rocks through dehydration and melting at lithospheric depths. The property of regional metamorphism is determined by both dynamic regime and thermal state of plate margins. The two variables have secularly evolved in Earth’s history, which is recorded by changes in the global distribution of metamorphic facies series through time. This results in two styles of plate tectonics. Modern-style plate tectonics has developed since the Neoproterozoic when plate margins were rigid enough for cold subducting, whereas ancient-style plate tectonics has developed since the Archean when plate margins were ductile enough for warm subducting. Such a difference is primarily dictated by higher mantle temperatures in the Archean than in the Phanerozoic. The development of plate subduction in both cold and warm realms is primarily dictated by the rheology of plate margins. This leads to a holistic model for the style of plate tectonics during different periods in Earth’s history.展开更多
Based on the daily data of temperature and precipitation of 108 meteorological stations in Southwest China from 1960 to 2009, we calculate the monthly and yearly surface humid indexes, as well as the extreme drought f...Based on the daily data of temperature and precipitation of 108 meteorological stations in Southwest China from 1960 to 2009, we calculate the monthly and yearly surface humid indexes, as well as the extreme drought frequency. According to the data, the temporal and spatial characteristics of the extreme drought frequency in inter-annual, inter-decadal, summer monsoon period and winter monsoon period are analyzed. The results are indicated as follows. (1) In general, the southwestern Sichuan Basin, southern Hengduan Mountains, southern coast of Guangxi and northern Guizhou are the areas where the extreme drought frequency has significantly increased in the past 50 years. As for the decadal change, from the 1960s to the 1980s the extreme drought frequency has presented a decreasing trend, while the 1990s is the wettest decade and the whole area is turning wet. In the 2000s, the extreme drought frequency rises quickly, but the regional differences reduce. (2) During summer monsoon period, the extreme drought frequency is growing, which generally occurs in the high mountains around the Sichuan Basin, most parts of Guangxi and "the broom-shaped mountains" in Yunnan. It is distinct that the altitude has impacts on the ex- treme drought frequency; during winter monsoon period, the area is relatively wet and the extreme drought frequency is decreasing. (3) During summer monsoon period, the abrupt change is observed in 2003, whereas the abrupt change during winter monsoon period is in 1989. The annual extreme drought frequency variation is a superposition of abrupt changes during summer monsoon and winter monsoon periods. The departure sequence vibration of annual extreme drought frequency is quasi-5 years and quasi-12 years.展开更多
Using the hourly precipitation records of meteorological stations in Shanghai, covering a period of almost a century (1916-2014), the long-term variation of extreme heavy precipitation in Shanghai on multiple spatia...Using the hourly precipitation records of meteorological stations in Shanghai, covering a period of almost a century (1916-2014), the long-term variation of extreme heavy precipitation in Shanghai on multiple spatial and temporal scales is analyzed, and the effects of urbanization on hourly rainstorms studied. Results show that: (1) Over the last century, extreme hourly precipitation events enhanced significantly. During the recent urbanization period from 1981 to 2014, the frequency of heavy precipitation increased significantly, with a distinct localized and abrupt characteristic. (2) The spatial distribution of long-term trends for the occurrence frequency and total precipitation intensity of hourly heavy precipitation in Shanghai shows a distinct urban rain-island feature; namely, heavy precipitation was increasingly focused in urban and suburban areas. Attribution analysis shows that urbanization in Shanghai contributed greatly to the increase in both frequency and intensity of heavy rainfall events in the city, thus leading to an increasing total precipitation amount of heavy rainfall events. In addition, the diurnal variation of rainfall intensity also shows distinctive urban-rural differences, especially during late afternoon and early nighttime in the city area. (3) Regional warming, with subsequent enhancement of water vapor content, convergence of moisture flux and atmospheric instability, provided favorable physical backgrounds for the formation of extreme precipitation. This accounts for the consistent increase in hourly heavy precipitation over the whole Shanghai area during recent times.展开更多
Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulat...Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulating present-day precipitation shows encouraging results. The spatial distributions of both mean and extreme precipitation, especially the locations of main precipitation centers, are reproduced reasonably. The simulated annual cycle of precipitation is close to the observed. The performance of the model over eastern China is generally better than that over western China. A weakness of the model is the overestimation of precipitation over northern and western China. Analyses on the potential change in precipitation projected under the A1B scenario show that both annual mean precipitation intensity and extreme precipitation would increase significantly over southeastern China. The percentage increase in extreme precipitation is larger than that of mean precipitation. Meanwhile, decreases in mean and extreme precipitation are evident over the southern Tibetan Plateau. For precipitation days, extreme precipitation days are projected to increase over all of China. Both consecutive dry days over northern China and consecutive wet days over southern China would decrease.展开更多
Hourly rainfall measurements of 1919 national-level meteorological stations from 1981 through 2012 are used to document,for the first time,the climatology of extreme rainfall in hourly through 24-h accumulation period...Hourly rainfall measurements of 1919 national-level meteorological stations from 1981 through 2012 are used to document,for the first time,the climatology of extreme rainfall in hourly through 24-h accumulation periods in China. Rainfall amounts for 3-,6-,12- and 24-h periods at each station are constructed through running accumulation from hourly rainfall data that have been screened by proper quality control procedures. For each station and for each accumulation period,the historical maximum is found,and the corresponding 50-year return values are estimated using generalized extreme value theory. Based on the percentiles of the two types of extreme rainfall values among all the stations,standard thresholds separating Grade I,Grade II and Grade III extreme rainfall are established,which roughly correspond to the 70th and 90th percentiles for each of the accumulation periods. The spatial characteristics of the two types of extreme rainfall are then examined for different accumulation periods. The spatial distributions of extreme rainfall in hourly through 6-h periods are more similar than those of 12- and 24-h periods. Grade III rainfall is mostly found over South China,the western Sichuan Basin,along the southern and eastern coastlines,and in the large river basins and plains. There are similar numbers of stations with Grade III extreme hourly rainfall north and south of 30°N,but the percentage increases to about 70% south of 30°N as the accumulation period increases to 24 hours,reflecting richer moisture and more prolonged rain events in southern China. Potential applications of the extreme rainfall climatology and classification standards are suggested at the end.展开更多
Daily maximum/minimum temperatures and relative humidity records from 510 stations in China for the period 1960–2008 were used to investigate geographical patterns and temporal variations of heatwave (HW) events. D...Daily maximum/minimum temperatures and relative humidity records from 510 stations in China for the period 1960–2008 were used to investigate geographical patterns and temporal variations of heatwave (HW) events. Dry and wet HW events were compared by different definitions. Regionally, both dry and wet HW events are commonly located in southeastern China in the monsoon area, with neither type occurring in the northeast part of Northeast China and Southwest China, while the north-northwest region of the country experiences dry HW events and a few wet HW events. In the southeast of the country, site dry HW events occurred from April to September and mostly in June, while site wet HW events occurred from April to October and mostly in September. In total, 163 regional wet HW events were identified. The ten longest regional wet HW events lasted for more than 20 days, while the mean duration for 163 events was about 11 days. For the top ten events, six occurred after the 1990s, compared with four before this time. Global surface warming was clear since 1979, but the frequency and severity of regional wet HW events were relatively low in the 1980s, increasing remarkably since the 1990s. Possible reasons for this might be the strong interdecadal and interannual variations in regional atmospheric circulations, as well as water transport related directly to temperature contrasts in different regions, rather than global-mean temperature changes.展开更多
Multi-decadal high resolution simulations over the CORDEX East Asia domain were performed with the regional climate model RegCM3 nested within the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version...Multi-decadal high resolution simulations over the CORDEX East Asia domain were performed with the regional climate model RegCM3 nested within the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2). Two sets of simulations were conducted at the resolution of 50 km, one for present day (1980-2005) and another for near-future climate (2015-40) under the Representative Concentration Pathways 8.5 (RCP8.5) scenario. Results show that RegCM3 adds value with respect to FGOALS-g2 in simulating the spatial patterns of summer total and extreme precipitation over China for present day climate. The major deficiency is that RegCM3 underestimates both total and extreme precipi- tation over the Yangtze River valley. The potential changes in total and extreme precipitation over China in summer under the RCP8.5 scenario were analyzed. Both RegCM3 and FGOALS-g2 results show that total and extreme precipitation tend to increase over northeastern China and the Tibetan Plateau, but tend to decrease over southeastern China. In both RegCM3 and FGOALS-g2, the change in extreme precipitation is weaker than that for total precipitation. RegCM3 projects much stronger amplitude of total and extreme precipitation changes and provides more regional-scale features than FGOALS-g2. A large uncertainty is found over the Yangtze River valley, where RegCM3 and FGOALS-g2 project opposite signs in terms of precipitation changes. The projected change of vertically integrated water vapor flux convergence generally follows the changes in total and extreme precipitation in both RegCM3 and FGOALS-g2, while the amplitude of change is stronger in RegCM3. Results suggest that the spatial pattern of projected precipitation changes may be more affected by the changes in water vapor flux convergence, rather than moisture content itself.展开更多
An overview of basic research on climate change in recent years in China is presented. In the past 100 years in China, average annual mean surface air temperature (SAT) has increased at a rate ranging from 0.03℃ (...An overview of basic research on climate change in recent years in China is presented. In the past 100 years in China, average annual mean surface air temperature (SAT) has increased at a rate ranging from 0.03℃ (10 yr)-1 to 0.12℃ (10 yr)-1. This warming is more evident in northern China and is more significant in winter and spring. In the past 50 years in China, at least 27% of the average annual warming has been caused by urbanization. Overall, no significant trends have been detected in annual and/or summer precipitation in China on a whole for the past 100 years or 50 years. Both increases and decreases in frequencies of major extreme climate events have been observed for the past 50 years. The frequencies of extreme temperature events have generally displayed a consistent pattern of change across the country, while the frequencies of extreme precipitation events have shown only regionally and seasonally significant trends. The frequency of tropical cyclone landfall decreased slightly, but the frequency of sand/dust storms decreased significantly. Proxy records indicate that the annual mean SAT in the past a few decades is the highest in the past 400-500 years in China, but it may not have exceeded the highest level of the Medieval Warm Period (1000 1300 AD). Proxy records also indicate that droughts and floods in eastern China have been characterized by continuously abnormal rainfall periods, with the frequencies of extreme droughts and floods in the 20th century most likely being near the average levels of the past 2000 years. The attribution studies suggest that increasing greenhouse gas (GHG) concentrations in the atmosphere are likely to be a main factor for the observed surface warming nationwide. The Yangtze River and Huaihe River basins underwent a cooling trend in summer over the past 50 years, which might have been caused by increased aerosol concentrations and cloud cover. However, natural climate variability might have been a main driver for the mean and extreme precipitati展开更多
In this study,the unprecedented extreme rainfall event during 19-20 July 2021,which caused devastating flooding in Zhengzhou City and its nearby areas,is examined based on observational data analysis and WRF model 40-...In this study,the unprecedented extreme rainfall event during 19-20 July 2021,which caused devastating flooding in Zhengzhou City and its nearby areas,is examined based on observational data analysis and WRF model 40-h simulations on 1-km horizontal resolution.The results show that the model successfully reproduces(i)major synopticscale weather systems(i.e.,the western Pacific subtropical high,the Tibetan high,two typhoons,and the Huang-Huai cyclone),(ii)convective initiation along the east to north edge of the Songshan Mountain,where orographic lifting is obvious,and(iii)subsequent formation of the convective storm producing the extreme rainfall in Zhengzhou.In particular,the model generates the maximum rainfall rate of 233 mm h^(-1)and 40-h accumulated rainfall of 704 mm,corresponding well to the observed extreme values of 201.9 mm h^(-1)and 818 mm,at nearly observed timing and location.Importantly,the model reproduces an intense quasi-stationary,well-organized meso-γ-scale convective system,surrounded by an arc-shaped convergence zone,allowing the development of convective updrafts in a three-quarter circle around the convective system,in a way similar to“multidirectional pumping,”attracting all associated precipitation overlaid and concentrated into the same trailing region to generate the extreme hourly rainfall over Zhengzhou.Our study emphasizes the significant contribution of the unique dynamic structure of the well-organized meso-γ-scale convective system to the record-high hourly rainfall.A possible dynamic mechanism for short-time extreme rainfall production is proposed.That is,the arc-shaped convergence zone of the mesoscale convective system,acting like multidirectional lifting pumps,transports precipitation from different directions into the same region,and thus produces the extreme rainfall.The results gained herein may shed new light on better understanding and forecasting of short-time extreme rainfall.展开更多
Persistent heavy rainfall events (PHR events) comprise one category of weather- and climate- related extreme events. Based on daily rainfall data measured in China during the period of 1951-2004, several quantitativ...Persistent heavy rainfall events (PHR events) comprise one category of weather- and climate- related extreme events. Based on daily rainfall data measured in China during the period of 1951-2004, several quantitative criteria were developed to define PHR events by means of their precipitation intensity, temporal duration, spatial extent and persistence. Then a semi-objective classification based on these criteria was applied to summer daily rainfall data to identify all PHR events. A total of 197 events were observed during the study period. All events were further classified into 5 categories according to their comprehensive intensity; into 3 types according to their circulation regime; and into 8 groups according to the geographic locations of their rainbands. Based on these different classifications, finally, the behaviors of 130 PHR events identified as the most severe, severe and moderate categories since the year of 1951, including characteristics of the spatial and temporal distributions of their frequencies, intensities, and rainbands, were investigated in order to present a comprehensive description of the PHR events. The results will be helpful to the future study of revealing and understanding the processes that govern the production of the PHR events and to the improvement of the forecasts of the PHR events.展开更多
In this paper we consider the large deviations for random sums $S(t) = \sum _{i = t}^{N(t)} X_i ,t \geqslant 0$ , whereX n,n?1 are independent, identically distributed and non-negative random variables with a common h...In this paper we consider the large deviations for random sums $S(t) = \sum _{i = t}^{N(t)} X_i ,t \geqslant 0$ , whereX n,n?1 are independent, identically distributed and non-negative random variables with a common heavy-tailed distribution function F, andN(t), t?0 is a process of non-negative integer-valued random variables, independent ofX n,n?1. Under the assumption that the tail of F is of Pareto’s type (regularly or extended regularly varying), we investigate what reasonable condition can be given onN(t), t?0 under which precise large deviation for S( t) holds. In particular, the condition we obtain is satisfied for renewal counting processes.展开更多
Based on the daily precipitation data of 27 meteorological stations from 1960 to 2009 in the Huaihe River Basin, spatio-temporal trend and statistical distribution of extreme precipitation events in this area are anal...Based on the daily precipitation data of 27 meteorological stations from 1960 to 2009 in the Huaihe River Basin, spatio-temporal trend and statistical distribution of extreme precipitation events in this area are analyzed. Annual maximum series (AM) and peak over threshold series (POT) are selected to simulate the probability distribution of extreme pre- cipitation. The results show that positive trend of annual maximum precipitation is detected at most of used stations, only a small number of stations are found to depict a negative trend during the past five decades, and none of the positive or negative trend is significant. The maximum precipitation event almost occurred in the flooding period during the 1960s and 1970s. By the L-moments method, the parameters of three extreme distributions, i.e., Gen- eralized extreme value distribution (GEV), Generalized Pareto distribution (GP) and Gamma distribution are estimated. From the results of goodness of fit test and Kolmogorov-Smirnov (K-S) test, AM series can be better fitted by GEV model and POT series can be better fitted by GP model. By the comparison of the precipitation amounts under different return levels, it can be found that the values obtained from POT series are a little larger than the values from AM series, and they can better simulate the observed values in the Huaihe River Basin.展开更多
基金Thanks are due to CSIRO in Australia and the Institute of Botany,Chinese Academy of Sciences,National Climate Center of China , for providing the data sets of the GCM and the vegetation coverThis research was supported by the National Natural Science Foundation of China under Grant No, 40125014National Key Programme for Developing Basic Sciences (G1998040900-part 1).
文摘Changes of extreme events due to greenhouse effects (2 × CO<SUB>2</SUB>) over East Asia, with a focus on the China region as simulated by a regional climate model (RegCM2), are investigated. The model is nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM). Analysis of the control run of the regional model indicates that it can reproduce well the extreme events in China. Statistically significant changes of the events are analyzed. Results show that both daily maximum and daily minimum temperature increase in 2 × CO<SUB>2</SUB> conditions, while the diurnal temperature range decreases. The number of hot spell days increases while the number of cold spell days decreases. The number of rainy days and heavy rain days increases over some sub-regions of China. The 2 × CO<SUB>2</SUB> conditions also cause some changes in the tropical storms affecting China.
基金supported by the R & D Special Fund for Public Welfare Industry (meteorology)(GYHY201106018)National Key Program for Developing Basic Sciences (Grant No. 2006CB400503)
文摘Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rainfall events and severe rainfall events are discussed.Furthermore,the percentile method was used to define local hourly extreme precipitation;based on this,diurnal variations and trends in extreme precipitation were further studied.The results of this study show that,over Yunnan,South China,North China,and Northeast China,the most frequent extreme precipitation events occur most frequently in late afternoon and/or early evening.In the Guizhou Plateau and the Sichuan Basin,the maximum frequency of extreme precipitation events occurs in the late night and/or early morning.And in the western Sichuan Plateau,the maximum frequency occurs in the middle of the night.The frequency of extreme precipitation (based on hourly rainfall measurements) has increased in most parts of eastern China,especially in Northeast China and the middle and lower reaches of the Yangtze River,but precipitation has decreased significantly in North China in the past 50 years.In addition,stations in the Guizhou Plateau and the middle and lower reaches of the Yangtze River exhibit significant increasing trends in hourly precipitation extremes during the nighttime more than during the daytime.
基金financial support from High-end Foreign Expert Introduction program(No.G20190022002)Chongqing Construction Science and Technology Plan Project(2019-0045)as well as Chongqing Engineering Research Center of Disaster Prevention&Control for Banks and Structures in Three Gorges Reservoir Area(Nos.SXAPGC18ZD01 and SXAPGC18YB03)。
文摘Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random forest(RF)ensemble learning methods for capturing the relationships between the USS and various basic soil parameters.Based on the soil data sets from TC304 database,a general approach is developed to predict the USS of soft clays using the two machine learning methods above,where five feature variables including the preconsolidation stress(PS),vertical effective stress(VES),liquid limit(LL),plastic limit(PL)and natural water content(W)are adopted.To reduce the dependence on the rule of thumb and inefficient brute-force search,the Bayesian optimization method is applied to determine the appropriate model hyper-parameters of both XGBoost and RF.The developed models are comprehensively compared with three comparison machine learning methods and two transformation models with respect to predictive accuracy and robustness under 5-fold cross-validation(CV).It is shown that XGBoost-based and RF-based methods outperform these approaches.Besides,the XGBoostbased model provides feature importance ranks,which makes it a promising tool in the prediction of geotechnical parameters and enhances the interpretability of model.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB18020303)the National Natural Science Foundation of China (41590620 and 41890831).
文摘When plate tectonics started to occur on Earth and how it has evolved through time are two of the most fundamental questions in earth sciences. While gravity-driven subducting has been accepted as a critical condition for the operation of plate tectonics on Earth, it is intriguing how the dynamic regime and thermal state of subduction zones have affected the style of plate tectonics in Earth’s history. The metamorphic rocks of regional distribution along convergent plate boundaries record reworking of crustal rocks through dehydration and melting at lithospheric depths. The property of regional metamorphism is determined by both dynamic regime and thermal state of plate margins. The two variables have secularly evolved in Earth’s history, which is recorded by changes in the global distribution of metamorphic facies series through time. This results in two styles of plate tectonics. Modern-style plate tectonics has developed since the Neoproterozoic when plate margins were rigid enough for cold subducting, whereas ancient-style plate tectonics has developed since the Archean when plate margins were ductile enough for warm subducting. Such a difference is primarily dictated by higher mantle temperatures in the Archean than in the Phanerozoic. The development of plate subduction in both cold and warm realms is primarily dictated by the rheology of plate margins. This leads to a holistic model for the style of plate tectonics during different periods in Earth’s history.
基金National Natural Science Foundation of China,No.41161012,Program for New Century Excellent Talents in University from the Ministry of Education of China,No.NCET-10-0019,Basic Scientific Research Foundation in University of Gansu Province
文摘Based on the daily data of temperature and precipitation of 108 meteorological stations in Southwest China from 1960 to 2009, we calculate the monthly and yearly surface humid indexes, as well as the extreme drought frequency. According to the data, the temporal and spatial characteristics of the extreme drought frequency in inter-annual, inter-decadal, summer monsoon period and winter monsoon period are analyzed. The results are indicated as follows. (1) In general, the southwestern Sichuan Basin, southern Hengduan Mountains, southern coast of Guangxi and northern Guizhou are the areas where the extreme drought frequency has significantly increased in the past 50 years. As for the decadal change, from the 1960s to the 1980s the extreme drought frequency has presented a decreasing trend, while the 1990s is the wettest decade and the whole area is turning wet. In the 2000s, the extreme drought frequency rises quickly, but the regional differences reduce. (2) During summer monsoon period, the extreme drought frequency is growing, which generally occurs in the high mountains around the Sichuan Basin, most parts of Guangxi and "the broom-shaped mountains" in Yunnan. It is distinct that the altitude has impacts on the ex- treme drought frequency; during winter monsoon period, the area is relatively wet and the extreme drought frequency is decreasing. (3) During summer monsoon period, the abrupt change is observed in 2003, whereas the abrupt change during winter monsoon period is in 1989. The annual extreme drought frequency variation is a superposition of abrupt changes during summer monsoon and winter monsoon periods. The departure sequence vibration of annual extreme drought frequency is quasi-5 years and quasi-12 years.
基金jointly supported by the Major Consulting Projects of the Chinese Academy of Engineering(“Study on Strategies and Measures for the Prevention and Control of Urban Flood and Waterlogging Disasters in China”)the Public Welfare Industry(Meteorological)Research Projects(Grant Nos.GYHY201306065,GYHY201406001)a research project of the Shanghai Meteorological Bureau(Grant No.YJ201604)
文摘Using the hourly precipitation records of meteorological stations in Shanghai, covering a period of almost a century (1916-2014), the long-term variation of extreme heavy precipitation in Shanghai on multiple spatial and temporal scales is analyzed, and the effects of urbanization on hourly rainstorms studied. Results show that: (1) Over the last century, extreme hourly precipitation events enhanced significantly. During the recent urbanization period from 1981 to 2014, the frequency of heavy precipitation increased significantly, with a distinct localized and abrupt characteristic. (2) The spatial distribution of long-term trends for the occurrence frequency and total precipitation intensity of hourly heavy precipitation in Shanghai shows a distinct urban rain-island feature; namely, heavy precipitation was increasingly focused in urban and suburban areas. Attribution analysis shows that urbanization in Shanghai contributed greatly to the increase in both frequency and intensity of heavy rainfall events in the city, thus leading to an increasing total precipitation amount of heavy rainfall events. In addition, the diurnal variation of rainfall intensity also shows distinctive urban-rural differences, especially during late afternoon and early nighttime in the city area. (3) Regional warming, with subsequent enhancement of water vapor content, convergence of moisture flux and atmospheric instability, provided favorable physical backgrounds for the formation of extreme precipitation. This accounts for the consistent increase in hourly heavy precipitation over the whole Shanghai area during recent times.
基金supported by the National Key Technologies R&D Program(Grant No. 2007BAC29B03)China-UK-Swiss Adaptingto Climate Change in China Project (ACCC)-Climate Sciencethe National Natural Science Foundation of China (Grant No. 40890054)
文摘Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulating present-day precipitation shows encouraging results. The spatial distributions of both mean and extreme precipitation, especially the locations of main precipitation centers, are reproduced reasonably. The simulated annual cycle of precipitation is close to the observed. The performance of the model over eastern China is generally better than that over western China. A weakness of the model is the overestimation of precipitation over northern and western China. Analyses on the potential change in precipitation projected under the A1B scenario show that both annual mean precipitation intensity and extreme precipitation would increase significantly over southeastern China. The percentage increase in extreme precipitation is larger than that of mean precipitation. Meanwhile, decreases in mean and extreme precipitation are evident over the southern Tibetan Plateau. For precipitation days, extreme precipitation days are projected to increase over all of China. Both consecutive dry days over northern China and consecutive wet days over southern China would decrease.
基金supported by the National Major Basic Research “973” Program of China under Grant No.2013CB430100,including its sub-grants 2013CB430106 and 2013CB430103the Social Commonwealth Research Program under Grant No.GYHY201406002+1 种基金the National Natural Science Foundation of China under Grant No.41375051Key Project of National Social Science Foundation of China (11&zd167)
文摘Hourly rainfall measurements of 1919 national-level meteorological stations from 1981 through 2012 are used to document,for the first time,the climatology of extreme rainfall in hourly through 24-h accumulation periods in China. Rainfall amounts for 3-,6-,12- and 24-h periods at each station are constructed through running accumulation from hourly rainfall data that have been screened by proper quality control procedures. For each station and for each accumulation period,the historical maximum is found,and the corresponding 50-year return values are estimated using generalized extreme value theory. Based on the percentiles of the two types of extreme rainfall values among all the stations,standard thresholds separating Grade I,Grade II and Grade III extreme rainfall are established,which roughly correspond to the 70th and 90th percentiles for each of the accumulation periods. The spatial characteristics of the two types of extreme rainfall are then examined for different accumulation periods. The spatial distributions of extreme rainfall in hourly through 6-h periods are more similar than those of 12- and 24-h periods. Grade III rainfall is mostly found over South China,the western Sichuan Basin,along the southern and eastern coastlines,and in the large river basins and plains. There are similar numbers of stations with Grade III extreme hourly rainfall north and south of 30°N,but the percentage increases to about 70% south of 30°N as the accumulation period increases to 24 hours,reflecting richer moisture and more prolonged rain events in southern China. Potential applications of the extreme rainfall climatology and classification standards are suggested at the end.
基金supported jointly by the National Natural Science Foundation of China (Grant No.40975039),GYHY201006018the Key Technologies R&D Program (Grant No. 2009BAC51B00)
文摘Daily maximum/minimum temperatures and relative humidity records from 510 stations in China for the period 1960–2008 were used to investigate geographical patterns and temporal variations of heatwave (HW) events. Dry and wet HW events were compared by different definitions. Regionally, both dry and wet HW events are commonly located in southeastern China in the monsoon area, with neither type occurring in the northeast part of Northeast China and Southwest China, while the north-northwest region of the country experiences dry HW events and a few wet HW events. In the southeast of the country, site dry HW events occurred from April to September and mostly in June, while site wet HW events occurred from April to October and mostly in September. In total, 163 regional wet HW events were identified. The ten longest regional wet HW events lasted for more than 20 days, while the mean duration for 163 events was about 11 days. For the top ten events, six occurred after the 1990s, compared with four before this time. Global surface warming was clear since 1979, but the frequency and severity of regional wet HW events were relatively low in the 1980s, increasing remarkably since the 1990s. Possible reasons for this might be the strong interdecadal and interannual variations in regional atmospheric circulations, as well as water transport related directly to temperature contrasts in different regions, rather than global-mean temperature changes.
基金supported by the National Natural Science Foundation of China(Grant Nos.41205080 and 41023002)National Program on Key Basic Research Project of China(2013CB956204)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05110301)China R&D Special Fund for Public Welfare Industry(meteorology)(GYHY201306019)Public Science and Technology Research Funds(Projects of Ocean Grant No.201105019-3)
文摘Multi-decadal high resolution simulations over the CORDEX East Asia domain were performed with the regional climate model RegCM3 nested within the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2). Two sets of simulations were conducted at the resolution of 50 km, one for present day (1980-2005) and another for near-future climate (2015-40) under the Representative Concentration Pathways 8.5 (RCP8.5) scenario. Results show that RegCM3 adds value with respect to FGOALS-g2 in simulating the spatial patterns of summer total and extreme precipitation over China for present day climate. The major deficiency is that RegCM3 underestimates both total and extreme precipi- tation over the Yangtze River valley. The potential changes in total and extreme precipitation over China in summer under the RCP8.5 scenario were analyzed. Both RegCM3 and FGOALS-g2 results show that total and extreme precipitation tend to increase over northeastern China and the Tibetan Plateau, but tend to decrease over southeastern China. In both RegCM3 and FGOALS-g2, the change in extreme precipitation is weaker than that for total precipitation. RegCM3 projects much stronger amplitude of total and extreme precipitation changes and provides more regional-scale features than FGOALS-g2. A large uncertainty is found over the Yangtze River valley, where RegCM3 and FGOALS-g2 project opposite signs in terms of precipitation changes. The projected change of vertically integrated water vapor flux convergence generally follows the changes in total and extreme precipitation in both RegCM3 and FGOALS-g2, while the amplitude of change is stronger in RegCM3. Results suggest that the spatial pattern of projected precipitation changes may be more affected by the changes in water vapor flux convergence, rather than moisture content itself.
基金supported by the Ministry of Science and Technology of China (Grant Nos. 2007BAC29B02, 2007BAC03A01 and GYHY201206012)
文摘An overview of basic research on climate change in recent years in China is presented. In the past 100 years in China, average annual mean surface air temperature (SAT) has increased at a rate ranging from 0.03℃ (10 yr)-1 to 0.12℃ (10 yr)-1. This warming is more evident in northern China and is more significant in winter and spring. In the past 50 years in China, at least 27% of the average annual warming has been caused by urbanization. Overall, no significant trends have been detected in annual and/or summer precipitation in China on a whole for the past 100 years or 50 years. Both increases and decreases in frequencies of major extreme climate events have been observed for the past 50 years. The frequencies of extreme temperature events have generally displayed a consistent pattern of change across the country, while the frequencies of extreme precipitation events have shown only regionally and seasonally significant trends. The frequency of tropical cyclone landfall decreased slightly, but the frequency of sand/dust storms decreased significantly. Proxy records indicate that the annual mean SAT in the past a few decades is the highest in the past 400-500 years in China, but it may not have exceeded the highest level of the Medieval Warm Period (1000 1300 AD). Proxy records also indicate that droughts and floods in eastern China have been characterized by continuously abnormal rainfall periods, with the frequencies of extreme droughts and floods in the 20th century most likely being near the average levels of the past 2000 years. The attribution studies suggest that increasing greenhouse gas (GHG) concentrations in the atmosphere are likely to be a main factor for the observed surface warming nationwide. The Yangtze River and Huaihe River basins underwent a cooling trend in summer over the past 50 years, which might have been caused by increased aerosol concentrations and cloud cover. However, natural climate variability might have been a main driver for the mean and extreme precipitati
基金Supported by the National Key Research and Development Program of China(2017YFC1501806,2018YFC1507404)National Natural Science Foundation of China(42075083)。
文摘In this study,the unprecedented extreme rainfall event during 19-20 July 2021,which caused devastating flooding in Zhengzhou City and its nearby areas,is examined based on observational data analysis and WRF model 40-h simulations on 1-km horizontal resolution.The results show that the model successfully reproduces(i)major synopticscale weather systems(i.e.,the western Pacific subtropical high,the Tibetan high,two typhoons,and the Huang-Huai cyclone),(ii)convective initiation along the east to north edge of the Songshan Mountain,where orographic lifting is obvious,and(iii)subsequent formation of the convective storm producing the extreme rainfall in Zhengzhou.In particular,the model generates the maximum rainfall rate of 233 mm h^(-1)and 40-h accumulated rainfall of 704 mm,corresponding well to the observed extreme values of 201.9 mm h^(-1)and 818 mm,at nearly observed timing and location.Importantly,the model reproduces an intense quasi-stationary,well-organized meso-γ-scale convective system,surrounded by an arc-shaped convergence zone,allowing the development of convective updrafts in a three-quarter circle around the convective system,in a way similar to“multidirectional pumping,”attracting all associated precipitation overlaid and concentrated into the same trailing region to generate the extreme hourly rainfall over Zhengzhou.Our study emphasizes the significant contribution of the unique dynamic structure of the well-organized meso-γ-scale convective system to the record-high hourly rainfall.A possible dynamic mechanism for short-time extreme rainfall production is proposed.That is,the arc-shaped convergence zone of the mesoscale convective system,acting like multidirectional lifting pumps,transports precipitation from different directions into the same region,and thus produces the extreme rainfall.The results gained herein may shed new light on better understanding and forecasting of short-time extreme rainfall.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40575015.
文摘Persistent heavy rainfall events (PHR events) comprise one category of weather- and climate- related extreme events. Based on daily rainfall data measured in China during the period of 1951-2004, several quantitative criteria were developed to define PHR events by means of their precipitation intensity, temporal duration, spatial extent and persistence. Then a semi-objective classification based on these criteria was applied to summer daily rainfall data to identify all PHR events. A total of 197 events were observed during the study period. All events were further classified into 5 categories according to their comprehensive intensity; into 3 types according to their circulation regime; and into 8 groups according to the geographic locations of their rainbands. Based on these different classifications, finally, the behaviors of 130 PHR events identified as the most severe, severe and moderate categories since the year of 1951, including characteristics of the spatial and temporal distributions of their frequencies, intensities, and rainbands, were investigated in order to present a comprehensive description of the PHR events. The results will be helpful to the future study of revealing and understanding the processes that govern the production of the PHR events and to the improvement of the forecasts of the PHR events.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10071081) .
文摘In this paper we consider the large deviations for random sums $S(t) = \sum _{i = t}^{N(t)} X_i ,t \geqslant 0$ , whereX n,n?1 are independent, identically distributed and non-negative random variables with a common heavy-tailed distribution function F, andN(t), t?0 is a process of non-negative integer-valued random variables, independent ofX n,n?1. Under the assumption that the tail of F is of Pareto’s type (regularly or extended regularly varying), we investigate what reasonable condition can be given onN(t), t?0 under which precise large deviation for S( t) holds. In particular, the condition we obtain is satisfied for renewal counting processes.
基金National Basic Research Program of China, No.2010CB428406 National Natural Science Foundation of China, No.41071025 The meteorological data used in this study were collected from China Meteorological Administration (CMA), which is highly appreciated.
文摘Based on the daily precipitation data of 27 meteorological stations from 1960 to 2009 in the Huaihe River Basin, spatio-temporal trend and statistical distribution of extreme precipitation events in this area are analyzed. Annual maximum series (AM) and peak over threshold series (POT) are selected to simulate the probability distribution of extreme pre- cipitation. The results show that positive trend of annual maximum precipitation is detected at most of used stations, only a small number of stations are found to depict a negative trend during the past five decades, and none of the positive or negative trend is significant. The maximum precipitation event almost occurred in the flooding period during the 1960s and 1970s. By the L-moments method, the parameters of three extreme distributions, i.e., Gen- eralized extreme value distribution (GEV), Generalized Pareto distribution (GP) and Gamma distribution are estimated. From the results of goodness of fit test and Kolmogorov-Smirnov (K-S) test, AM series can be better fitted by GEV model and POT series can be better fitted by GP model. By the comparison of the precipitation amounts under different return levels, it can be found that the values obtained from POT series are a little larger than the values from AM series, and they can better simulate the observed values in the Huaihe River Basin.