Both microstrueture and mechanical properties of low alloy steels treated by quenching and partitioning (Q&P) process were examined. The mixed microstructure of martensite and large-fractioned retained austenite (...Both microstrueture and mechanical properties of low alloy steels treated by quenching and partitioning (Q&P) process were examined. The mixed microstructure of martensite and large-fractioned retained austenite (about 27.3%) was characterized and analyzed, excellent combinations of total elongation of 19% and tensile strength of 1 835 MPa were obtained, and three-stage work hardening behavior was demonstrated during tensile test. The en hanced mechanical properties and work hardening behavior were explained based on the transformation induced plas ticity effect of large fractioned austenite.展开更多
为研究钛合金已加工表面相变机理及其影响因素,首先通过分析切削过程中切削刃对切削区域的作用机制,采用能量法建立结构参数、切削三要素与切削耗能的数值描述模型,结合Matlab对模型进行求解,获知进给量f的变化对钛合金切削耗能W的影响...为研究钛合金已加工表面相变机理及其影响因素,首先通过分析切削过程中切削刃对切削区域的作用机制,采用能量法建立结构参数、切削三要素与切削耗能的数值描述模型,结合Matlab对模型进行求解,获知进给量f的变化对钛合金切削耗能W的影响最大,切削速度vc次之,而切削深度ap最小;为验证描述模型的正确性,采用2种不同几何结构不同牌号的硬质合金可转位刀片对典型钛合金TC1、TC4、TA5以及合金钢30Cr Mn Si A在正常空冷和氩气冷环境下进行对比试验,试验结果与描述模型间的误差较小,有效证明了描述模型的正确性,同时明确了钛合金已加工表面相变形成机理,并揭示了其发展的规律性。研究可为钛合金的高品质加工提供数据支撑。展开更多
基金Item Sponsored by Youth Science Funds of China(51101036)National Basic Research Program of China(2010CB630803)National Key Technology Support Program of China(2013BAE07B05)
文摘Both microstrueture and mechanical properties of low alloy steels treated by quenching and partitioning (Q&P) process were examined. The mixed microstructure of martensite and large-fractioned retained austenite (about 27.3%) was characterized and analyzed, excellent combinations of total elongation of 19% and tensile strength of 1 835 MPa were obtained, and three-stage work hardening behavior was demonstrated during tensile test. The en hanced mechanical properties and work hardening behavior were explained based on the transformation induced plas ticity effect of large fractioned austenite.
文摘为研究钛合金已加工表面相变机理及其影响因素,首先通过分析切削过程中切削刃对切削区域的作用机制,采用能量法建立结构参数、切削三要素与切削耗能的数值描述模型,结合Matlab对模型进行求解,获知进给量f的变化对钛合金切削耗能W的影响最大,切削速度vc次之,而切削深度ap最小;为验证描述模型的正确性,采用2种不同几何结构不同牌号的硬质合金可转位刀片对典型钛合金TC1、TC4、TA5以及合金钢30Cr Mn Si A在正常空冷和氩气冷环境下进行对比试验,试验结果与描述模型间的误差较小,有效证明了描述模型的正确性,同时明确了钛合金已加工表面相变形成机理,并揭示了其发展的规律性。研究可为钛合金的高品质加工提供数据支撑。