To strengthen brand identity,enrich tourist experiences,and promote heritage education,Taijiang National Park proposed to reconstruct Taiwan,China’s Dutch Trading Post in a different location from where it was initia...To strengthen brand identity,enrich tourist experiences,and promote heritage education,Taijiang National Park proposed to reconstruct Taiwan,China’s Dutch Trading Post in a different location from where it was initially erected in the 17th century.This paper is a case study of the reconstruction proposal for a lost colonial architectural complex in the context of heritage tourism.It discusses the practical and academic issues of rebuilding long-lost colonial heritage sites.The author provided a first-hand account of the technical and practical reasoning for reconstructing a bygone complex erected by Dutch settlers.Historical development phases of the Dutch Trading Post of Taiwan,China were first introduced,and then a reconstruction strategy was proposed to resolve conflicts with legal constraints.Additionally,a site selection process using GIS,a conceptually driven plan for reconstruction,and a 3D simulation were provided.Three specific issues in heritage rebuilding were further discussed,including the decision to reconstruct a heritage building(complex),the authenticity of the reconstructed building if done in a different location from where it was initially situated,and the need to discover more archaeological facts.展开更多
The Kuroshio inflow northeast of Taiwan Island plays an important role in the heat and nutrient balances over the East China Sea(ECS). Based on merged satellite altimeter data and the PCM-1 mooring observation at the ...The Kuroshio inflow northeast of Taiwan Island plays an important role in the heat and nutrient balances over the East China Sea(ECS). Based on merged satellite altimeter data and the PCM-1 mooring observation at the East Taiwan Channel(ETC), the study employs a correlation iteration scheme to find the optimal transport index for the Kuroshio inflow. The sea level difference with the highest correlation to the ETC transport is across the ECS shelf break rather than along the PCM-1 line. The counter-intuitive result is caused by large signal noise and poor track coverage of altimeters near the Taiwan coast. The optimal altimetric index is highly correlated with the two-year in-situ measurements as well as the ten-year output of the global assimilation model. It serves as a better estimator of Kuroshio inflow than those using tidal gauge data, and helps pinpoint a 5 cm mismatch of mean sea level in the Keelung tidal record. The mean transport of Kuroshio inflow based on the twenty-year altimetric index is 20.55 Sv with a standard deviation of 3.05 Sv. Wavelet spectrum of the index reveals that semi-annual period dominates the Kuroshio variation northeast of Taiwan Island.展开更多
Northward infl ow through the East Taiwan Channel is vital in modulation of water exchange processes off northeastern Taiwan,China.In addition to the eff ects of the Kuroshio Current and westward-propagating oceanic m...Northward infl ow through the East Taiwan Channel is vital in modulation of water exchange processes off northeastern Taiwan,China.In addition to the eff ects of the Kuroshio Current and westward-propagating oceanic mesoscale eddies,the seas off eastern Taiwan,China,are frequently infl uenced by typhoons.Focusing on extrema of East Taiwan Channel volume transport(ETCVT)that appear within days of typhoon infl uence,this study investigated 124 historical cyclones including 91 typhoons that passed over the study sea area off eastern Taiwan,China.Based on 25-year HYbrid Coordinate Ocean Model(HYCOM)data,71%of short-term(within 10 d)ETCVT absolute values with>5 Sv occurred under the infl uence of typhoons crossing the study sea area,and the maximum short-term ETCVT extrema induced by typhoons were 12.5 and-10.9 Sv.The ETCVT extrema induced by typhoons showed reasonable positive correlation with typhoon wind speed.More importantly,the ETCVT extrema diff ered in response to diff erent typhoon tracks.Three types of typhoon were identifi ed based on their track and impact on ETCVT.Representative typhoon cases were examined to elucidate the specifi cs of each typical response.Based on historical best track data and HYCOM data,it was established that Type I typhoons caused the ETCVT to exhibit a negative extremum followed by a positive extremum.All Type I,II,and III typhoons tended to result in typical ETCVT fl uctuations in the surface mixing layer above the depth of 50-100 m,while Type II typhoons were more likely to induce ETCVT fl uctuations in the subsurface layer.The fi ndings of this study enhance understanding of ETCVT extrema that occur following typhoon passage,which is valuable for short-term physical-biogeochemical studies both in the study region and in areas downstream owing to the large net volume transport changes induced by typhoons.展开更多
Oceanic front, especially Kuroshio front, is an important phenomenon that is of great significance for scientific research, national economy and military uses. However, Kuroshio front to the east of Taiwan (KFETW in ...Oceanic front, especially Kuroshio front, is an important phenomenon that is of great significance for scientific research, national economy and military uses. However, Kuroshio front to the east of Taiwan (KFETW in brief) was rare investigated. In this study, reanalysis method is used to study the KFETW's temporal and spatial variability and frontogenesis mechanism. It is found that although surface thermal front to the east of Taiwan is not obvious, there is an all-year strong Kuroshio thermal front called KFETW under the surface. The KFETW is connected to the south section of Kuroshio front in the East China Sea (KFECS in brief) and distributes along the east coastline of Taiwan. The KFETW has multi-scale variation feature. It has significant seasonal signal, and its intensity and width reach their maximum in summer. By using the reanalysis results obtained from this study, frontogenesis and changing mechanisms of the KFETW are discussed. It is found that both the Kuroshio and up-welling to the east of Taiwan can affect this front, and the up-welling may be the predominant factor in KFETW's frontogenesis and maintenance mechanism.展开更多
By using the reanalysis data, the impact of oceanic eddies and frontal wave on Kuroshio front to the east of Taiwan (KFETW) is studied. The result indicates that cold eddies (warm eddies) corresponding to the firs...By using the reanalysis data, the impact of oceanic eddies and frontal wave on Kuroshio front to the east of Taiwan (KFETW) is studied. The result indicates that cold eddies (warm eddies) corresponding to the first baroclinic mode of Rossby wave can weaken (strengthen) the strength of the KFETW and narrow (widen) the width of this front. A frontal wave of the KFETW during January to February in 1991 is detected from the reanalysis data. And the trough (crest) of the frontal wave may weaken (strengthen) the strength of the KFETW and narrow (widen) the width and thickness of this front. It is found through the diagnostic analysis of the energy source of the frontal wave that the contribution of barotropic instability or that of baroclinic instability is more than that of Ketvin-Helmholtz (K-H) instability by 1 - 2 order of magnitude, and the contribution of the baroclinic instability is 5 times than that of the barotropic instability, thereby the frontal wave is basically driven by the baroclinic instability.展开更多
Since the volume transport across the pycnocline is much smaller than that in the mixed layer, the current in the mixed layer can be regarded as non-divergent. An objective analysis method is deduced based on this hyp...Since the volume transport across the pycnocline is much smaller than that in the mixed layer, the current in the mixed layer can be regarded as non-divergent. An objective analysis method is deduced based on this hypothesis. The linear combination method is used to solve the non-divergent component of the current field of an ocean basin containing islands,which is equivalent to a mathematical problem of solving a Poisson equation in a multi-connected domain. The method is applied to the Bohai Sea, the Yellow Sea and the East China Sea (ECS). The modeled result is consistent with the current maps constructed by other oceanographers.展开更多
We investigated the interaction between mesoscale eddies and the Kuroshio Current east of Taiwan,China,using a fine-resolution regional general circulation model.Mesoscale eddies are injected into a region east of Tai...We investigated the interaction between mesoscale eddies and the Kuroshio Current east of Taiwan,China,using a fine-resolution regional general circulation model.Mesoscale eddies are injected into a region east of Taiwan,China,according to the quasi-geostrophic theory of stratified fluids.Modeled eddies propagated westward at the velocity of the first baroclinic mode Rossby wave.When eddies collide with the Kuroshio Current east of Taiwan,China,the spatial structure and volume transport of the Kuroshio Current shows a significant variation.The upper 600 m of the anticyclonic eddy cannot cross the Kuroshio Current to reach the region west of the Kuroshio Current;rather,these waters flow northward along the eastern side of the Kuroshio Current.The upper water carried by the anticyclonic eddies cannot reach the shelf of the East China Sea(ECS).In contrast,the waters in the upper layer of the cyclonic eddy reach the western side of the Kuroshio Current and then flow northward.The dynamic mechanism analysis shows that the interaction between the Kuroshio Current and the cyclonic(anticyclonic)eddy decrease(increase)the horizontal potential vorticity(PV)gradient,or PV barrier,whereby the cyclonic(anticyclonic)eddy can(cannot)cross the Kuroshio Current.This study implies that the continental shelf could potentially be influenced by cyclonic eddies in the open ocean,which can transport heat and material from the upper open ocean across the Kuroshio Current to the shelf waters.展开更多
基金Funding In 2014,the Tajiang National Park Authority put forward a feasibility study of reconstruction project of a Dutch trading post within the existing administrative boundaryThe author was a member of the academic and professional team who tendered the reconstruction project and had worked through 2015.
文摘To strengthen brand identity,enrich tourist experiences,and promote heritage education,Taijiang National Park proposed to reconstruct Taiwan,China’s Dutch Trading Post in a different location from where it was initially erected in the 17th century.This paper is a case study of the reconstruction proposal for a lost colonial architectural complex in the context of heritage tourism.It discusses the practical and academic issues of rebuilding long-lost colonial heritage sites.The author provided a first-hand account of the technical and practical reasoning for reconstructing a bygone complex erected by Dutch settlers.Historical development phases of the Dutch Trading Post of Taiwan,China were first introduced,and then a reconstruction strategy was proposed to resolve conflicts with legal constraints.Additionally,a site selection process using GIS,a conceptually driven plan for reconstruction,and a 3D simulation were provided.Three specific issues in heritage rebuilding were further discussed,including the decision to reconstruct a heritage building(complex),the authenticity of the reconstructed building if done in a different location from where it was initially situated,and the need to discover more archaeological facts.
基金supported by the National Basic Research Program of China(Grant No.2012CB417400)the National Natural Science Foundation of China(Grant Nos.41421005,U1406401)
文摘The Kuroshio inflow northeast of Taiwan Island plays an important role in the heat and nutrient balances over the East China Sea(ECS). Based on merged satellite altimeter data and the PCM-1 mooring observation at the East Taiwan Channel(ETC), the study employs a correlation iteration scheme to find the optimal transport index for the Kuroshio inflow. The sea level difference with the highest correlation to the ETC transport is across the ECS shelf break rather than along the PCM-1 line. The counter-intuitive result is caused by large signal noise and poor track coverage of altimeters near the Taiwan coast. The optimal altimetric index is highly correlated with the two-year in-situ measurements as well as the ten-year output of the global assimilation model. It serves as a better estimator of Kuroshio inflow than those using tidal gauge data, and helps pinpoint a 5 cm mismatch of mean sea level in the Keelung tidal record. The mean transport of Kuroshio inflow based on the twenty-year altimetric index is 20.55 Sv with a standard deviation of 3.05 Sv. Wavelet spectrum of the index reveals that semi-annual period dominates the Kuroshio variation northeast of Taiwan Island.
基金Supported by the National Natural Science Foundation of China(Nos.41630967,42076002,41776020,41476018)。
文摘Northward infl ow through the East Taiwan Channel is vital in modulation of water exchange processes off northeastern Taiwan,China.In addition to the eff ects of the Kuroshio Current and westward-propagating oceanic mesoscale eddies,the seas off eastern Taiwan,China,are frequently infl uenced by typhoons.Focusing on extrema of East Taiwan Channel volume transport(ETCVT)that appear within days of typhoon infl uence,this study investigated 124 historical cyclones including 91 typhoons that passed over the study sea area off eastern Taiwan,China.Based on 25-year HYbrid Coordinate Ocean Model(HYCOM)data,71%of short-term(within 10 d)ETCVT absolute values with>5 Sv occurred under the infl uence of typhoons crossing the study sea area,and the maximum short-term ETCVT extrema induced by typhoons were 12.5 and-10.9 Sv.The ETCVT extrema induced by typhoons showed reasonable positive correlation with typhoon wind speed.More importantly,the ETCVT extrema diff ered in response to diff erent typhoon tracks.Three types of typhoon were identifi ed based on their track and impact on ETCVT.Representative typhoon cases were examined to elucidate the specifi cs of each typical response.Based on historical best track data and HYCOM data,it was established that Type I typhoons caused the ETCVT to exhibit a negative extremum followed by a positive extremum.All Type I,II,and III typhoons tended to result in typical ETCVT fl uctuations in the surface mixing layer above the depth of 50-100 m,while Type II typhoons were more likely to induce ETCVT fl uctuations in the subsurface layer.The fi ndings of this study enhance understanding of ETCVT extrema that occur following typhoon passage,which is valuable for short-term physical-biogeochemical studies both in the study region and in areas downstream owing to the large net volume transport changes induced by typhoons.
基金supported by grants of the National Basic Research Program of China(No.2007CB816001)the National Natural Science Foundation of China (No.41030854,40906016 and 40906015)
文摘Oceanic front, especially Kuroshio front, is an important phenomenon that is of great significance for scientific research, national economy and military uses. However, Kuroshio front to the east of Taiwan (KFETW in brief) was rare investigated. In this study, reanalysis method is used to study the KFETW's temporal and spatial variability and frontogenesis mechanism. It is found that although surface thermal front to the east of Taiwan is not obvious, there is an all-year strong Kuroshio thermal front called KFETW under the surface. The KFETW is connected to the south section of Kuroshio front in the East China Sea (KFECS in brief) and distributes along the east coastline of Taiwan. The KFETW has multi-scale variation feature. It has significant seasonal signal, and its intensity and width reach their maximum in summer. By using the reanalysis results obtained from this study, frontogenesis and changing mechanisms of the KFETW are discussed. It is found that both the Kuroshio and up-welling to the east of Taiwan can affect this front, and the up-welling may be the predominant factor in KFETW's frontogenesis and maintenance mechanism.
文摘By using the reanalysis data, the impact of oceanic eddies and frontal wave on Kuroshio front to the east of Taiwan (KFETW) is studied. The result indicates that cold eddies (warm eddies) corresponding to the first baroclinic mode of Rossby wave can weaken (strengthen) the strength of the KFETW and narrow (widen) the width of this front. A frontal wave of the KFETW during January to February in 1991 is detected from the reanalysis data. And the trough (crest) of the frontal wave may weaken (strengthen) the strength of the KFETW and narrow (widen) the width and thickness of this front. It is found through the diagnostic analysis of the energy source of the frontal wave that the contribution of barotropic instability or that of baroclinic instability is more than that of Ketvin-Helmholtz (K-H) instability by 1 - 2 order of magnitude, and the contribution of the baroclinic instability is 5 times than that of the barotropic instability, thereby the frontal wave is basically driven by the baroclinic instability.
文摘Since the volume transport across the pycnocline is much smaller than that in the mixed layer, the current in the mixed layer can be regarded as non-divergent. An objective analysis method is deduced based on this hypothesis. The linear combination method is used to solve the non-divergent component of the current field of an ocean basin containing islands,which is equivalent to a mathematical problem of solving a Poisson equation in a multi-connected domain. The method is applied to the Bohai Sea, the Yellow Sea and the East China Sea (ECS). The modeled result is consistent with the current maps constructed by other oceanographers.
基金Supported by the National Key Research Development Program of China(No.2017YFC1404000)the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(No.KLOCW1802)+2 种基金the Startup Foundation for Introducing Talent of NUIST(No.2017r092)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42000000)the National Natural Science Foundation of China(No.41876019)。
文摘We investigated the interaction between mesoscale eddies and the Kuroshio Current east of Taiwan,China,using a fine-resolution regional general circulation model.Mesoscale eddies are injected into a region east of Taiwan,China,according to the quasi-geostrophic theory of stratified fluids.Modeled eddies propagated westward at the velocity of the first baroclinic mode Rossby wave.When eddies collide with the Kuroshio Current east of Taiwan,China,the spatial structure and volume transport of the Kuroshio Current shows a significant variation.The upper 600 m of the anticyclonic eddy cannot cross the Kuroshio Current to reach the region west of the Kuroshio Current;rather,these waters flow northward along the eastern side of the Kuroshio Current.The upper water carried by the anticyclonic eddies cannot reach the shelf of the East China Sea(ECS).In contrast,the waters in the upper layer of the cyclonic eddy reach the western side of the Kuroshio Current and then flow northward.The dynamic mechanism analysis shows that the interaction between the Kuroshio Current and the cyclonic(anticyclonic)eddy decrease(increase)the horizontal potential vorticity(PV)gradient,or PV barrier,whereby the cyclonic(anticyclonic)eddy can(cannot)cross the Kuroshio Current.This study implies that the continental shelf could potentially be influenced by cyclonic eddies in the open ocean,which can transport heat and material from the upper open ocean across the Kuroshio Current to the shelf waters.