MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation.Importantly,biogenesis of microRNAs displays specific temporal a...MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation.Importantly,biogenesis of microRNAs displays specific temporal and spatial profiles in distinct cell and tissue types and hence affects a broad spectrum of biological functions in normal cell growth and tumor development.Recent discoveries have revealed sophisticated mechanisms that control microRNA production and homeostasis in response to developmental and extracellular signals.Moreover,a link between dysregulation of microRNAs and human brain disorders has become increasingly evident.In this review,we focus on recent advances in understanding the regulation of microRNA biogenesis and function in neuronal and glial development in the mammalian brain,and dysregulation of the microRNA pathway in neurodevelopmental and neurodegenerative diseases.展开更多
随着中国进入老龄化社会,人口生育政策逐步放开,揭示脑与行为毕生发展的一般规律和常规模式(常模)正成为公共卫生和人口健康领域的重大基础需求.本文介绍"中国彩巢计划"(Chinese Color Nest Project—CCNP)这一在全国范围内...随着中国进入老龄化社会,人口生育政策逐步放开,揭示脑与行为毕生发展的一般规律和常规模式(常模)正成为公共卫生和人口健康领域的重大基础需求.本文介绍"中国彩巢计划"(Chinese Color Nest Project—CCNP)这一在全国范围内分期分步地开展的项目规划,在10年(2013~2022年:http://zuolab.psych.ac.cn/colornest.html)内CCNP将积累毕生发展各年龄段的心理行为与脑影像样本,基于加速纵向实验设计方法建立中国人脑毕生发展的常模轨线.作为CCNP的发育项目"成长在中国"(dev CCNP:Growing Up in China)这一学龄儿童青少年脑与行为生长曲线项目,dev CCNP已经完成对重庆北碚区192名健康儿童青少年(6~18岁)的5年追踪.初步的研究结果表明,dev CCNP在实验设计、样本采集策略、数据获取和存储、初步发现和数据共享等方面具备长期实施的可行性,我国应及早部署开展儿童青少年的脑与认知生长曲线常模的大规模脑科学研究计划,提升中国在脑科学与医疗健康研究领域的国际实力和影响力,革新脑疾病临床实践.展开更多
From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg taurine was daily added ...From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg taurine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neo- natal rats with intrauterine growth restriction undergoing taurine supplement were obtained for fur- ther experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. Immu- nohistochemical staining revealed that taurine supplement increased glial cell line-derived neuro- trophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.展开更多
文摘MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation.Importantly,biogenesis of microRNAs displays specific temporal and spatial profiles in distinct cell and tissue types and hence affects a broad spectrum of biological functions in normal cell growth and tumor development.Recent discoveries have revealed sophisticated mechanisms that control microRNA production and homeostasis in response to developmental and extracellular signals.Moreover,a link between dysregulation of microRNAs and human brain disorders has become increasingly evident.In this review,we focus on recent advances in understanding the regulation of microRNA biogenesis and function in neuronal and glial development in the mammalian brain,and dysregulation of the microRNA pathway in neurodevelopmental and neurodegenerative diseases.
文摘随着中国进入老龄化社会,人口生育政策逐步放开,揭示脑与行为毕生发展的一般规律和常规模式(常模)正成为公共卫生和人口健康领域的重大基础需求.本文介绍"中国彩巢计划"(Chinese Color Nest Project—CCNP)这一在全国范围内分期分步地开展的项目规划,在10年(2013~2022年:http://zuolab.psych.ac.cn/colornest.html)内CCNP将积累毕生发展各年龄段的心理行为与脑影像样本,基于加速纵向实验设计方法建立中国人脑毕生发展的常模轨线.作为CCNP的发育项目"成长在中国"(dev CCNP:Growing Up in China)这一学龄儿童青少年脑与行为生长曲线项目,dev CCNP已经完成对重庆北碚区192名健康儿童青少年(6~18岁)的5年追踪.初步的研究结果表明,dev CCNP在实验设计、样本采集策略、数据获取和存储、初步发现和数据共享等方面具备长期实施的可行性,我国应及早部署开展儿童青少年的脑与认知生长曲线常模的大规模脑科学研究计划,提升中国在脑科学与医疗健康研究领域的国际实力和影响力,革新脑疾病临床实践.
基金funded by the National Natural Science Foundation of China,No.81170577
文摘From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg taurine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neo- natal rats with intrauterine growth restriction undergoing taurine supplement were obtained for fur- ther experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. Immu- nohistochemical staining revealed that taurine supplement increased glial cell line-derived neuro- trophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.