In this paper, we study the normality criteria of meromorphic functions concerning shared fixed-points, we obtain: Let F be a family of meromorphic functions defined in a domain D. Let n, k ≥ 2 be two positive intege...In this paper, we study the normality criteria of meromorphic functions concerning shared fixed-points, we obtain: Let F be a family of meromorphic functions defined in a domain D. Let n, k ≥ 2 be two positive integers. For every f ∈ F, all of whose zeros have multiplicity at least (nk+2)/(n-1). If f(f(k))nand g(g(k))nshare z in D for each pair of functions f and g, then F is normal.展开更多
文摘In this paper, we study the normality criteria of meromorphic functions concerning shared fixed-points, we obtain: Let F be a family of meromorphic functions defined in a domain D. Let n, k ≥ 2 be two positive integers. For every f ∈ F, all of whose zeros have multiplicity at least (nk+2)/(n-1). If f(f(k))nand g(g(k))nshare z in D for each pair of functions f and g, then F is normal.