According to the previous literature published since 1989, statistical analysis for reported data on the heavy metals in Chinese vegetable plantation soils was carried out systematically in this article. The purpose o...According to the previous literature published since 1989, statistical analysis for reported data on the heavy metals in Chinese vegetable plantation soils was carried out systematically in this article. The purpose of this investigation was to study the status of heavy metal content in vegetable land soils systematically through objective assessment to promote the development of vegetable production with high quality and efficiency. It is concluded that Zn, Cr, Cu had relatively high concentrations while the mean concentrations of toxic metals, As, Hg, Cd were 8.03, 0.12, 0.28 mg·kg^-1, respectively with comparatively low concentrations in Chinese vegetable land. Comparing to Clainese Soil Quality Criterion GB 15618- 1995 (6.5 〈 pH 〈 7.5), about 24.1, 10.3, and 9.2% of the total samples was contaminated by Cd, Hg, and As, respectively, and the descending order of heavy metals was Cd 〉 Hg 〉 As 〉 Zn 〉 Cu 〉 Cr 〉 Pb. When compared among different regions, the more serious heavy metal contamination was found in the vegetable land of eastern China and the main contamination elements were Cd, Hg, and Zn. In the mid region, vegetable plantation land soil was mainly polluted by As and Cd, as well as by Hg, Zn, and Cu, to some extent. In the west region of China, Cd and As contamination was also observed to some degree, along with few soil samples exceeding the grade Ⅱ level of GB 15618-1995 (6.5 〈 pH 〈 7.5) for Cu, Cr, and Hg content. Compared to the five vegetable plantation land patterns, the highest concentration of As, Cd, Hg, and Zn occurred in the industrial/sewage irrigation vegetable land, especially for Hg with 2.36 mg·kg^-1 content averagely, which is 10.5-21.1 times higher than the other four types of vegetable lands. The highest concentration of Cn and Cr occurred in the greenhouse vegetable land soils, and urban vegetable land soil had the highest Pb content in comparison with the other types of vegetable plantation land patterns. By analyzing heavy metal content under differe展开更多
The heavy metal bioaccumulation levels of 13 species of mushrooms were studied. 13 different species of wild mushrooms growing in China were analyzed for Cu, Zn, Pb, Cd, and As. Contents of Cu, Zn, Cd and Pb in mushro...The heavy metal bioaccumulation levels of 13 species of mushrooms were studied. 13 different species of wild mushrooms growing in China were analyzed for Cu, Zn, Pb, Cd, and As. Contents of Cu, Zn, Cd and Pb in mushroom and Cu, Zn in Soil were tested by atomic absorption spectrometer (AAS), and As in samples by atomic fluorescent light (AFL). Contents of Cd and Pb in soil were analyzed by graphite furnace AAS. The results showed that contents of Cu, Pb, Cd, and As in Termitomyces microcarpus were the highest in the tested mushroom samples, which were 135.00, 13.28, 65.30, and 1.60 mg·kg^-1 (dry biomass) respectively, and the corresponding bioconcentration factor (BCF) for Cu and Cd was 57 and 1 674 separately, which was the highest data in 13 mushroom species. The capability ofBoletus griseus for Cd accumulation was very strong with BCF of 300. when people consume the wild edible mushrooms, contents of Cd and Pb should be greatly considered.展开更多
基金the National Key Technology R&D Program during the 11th Five-Year Plan period (2006BAD05B01)the project of Standards on Heavy Metal Contamination of Farmlands (2007-2009)Special Public Welfare Fund of Basic Scientific Research Service Spends for Research Institute/Academy supported by China Central Government
文摘According to the previous literature published since 1989, statistical analysis for reported data on the heavy metals in Chinese vegetable plantation soils was carried out systematically in this article. The purpose of this investigation was to study the status of heavy metal content in vegetable land soils systematically through objective assessment to promote the development of vegetable production with high quality and efficiency. It is concluded that Zn, Cr, Cu had relatively high concentrations while the mean concentrations of toxic metals, As, Hg, Cd were 8.03, 0.12, 0.28 mg·kg^-1, respectively with comparatively low concentrations in Chinese vegetable land. Comparing to Clainese Soil Quality Criterion GB 15618- 1995 (6.5 〈 pH 〈 7.5), about 24.1, 10.3, and 9.2% of the total samples was contaminated by Cd, Hg, and As, respectively, and the descending order of heavy metals was Cd 〉 Hg 〉 As 〉 Zn 〉 Cu 〉 Cr 〉 Pb. When compared among different regions, the more serious heavy metal contamination was found in the vegetable land of eastern China and the main contamination elements were Cd, Hg, and Zn. In the mid region, vegetable plantation land soil was mainly polluted by As and Cd, as well as by Hg, Zn, and Cu, to some extent. In the west region of China, Cd and As contamination was also observed to some degree, along with few soil samples exceeding the grade Ⅱ level of GB 15618-1995 (6.5 〈 pH 〈 7.5) for Cu, Cr, and Hg content. Compared to the five vegetable plantation land patterns, the highest concentration of As, Cd, Hg, and Zn occurred in the industrial/sewage irrigation vegetable land, especially for Hg with 2.36 mg·kg^-1 content averagely, which is 10.5-21.1 times higher than the other four types of vegetable lands. The highest concentration of Cn and Cr occurred in the greenhouse vegetable land soils, and urban vegetable land soil had the highest Pb content in comparison with the other types of vegetable plantation land patterns. By analyzing heavy metal content under differe
基金the National Natural Science Foundation of China(40741004)Program of Sichuan Bureau of Science and Technology (04SG023-006-05)Post Doctorial Program of Institute of Mountain Haz-ards and Environment, Chinese Academy of Sciences
文摘The heavy metal bioaccumulation levels of 13 species of mushrooms were studied. 13 different species of wild mushrooms growing in China were analyzed for Cu, Zn, Pb, Cd, and As. Contents of Cu, Zn, Cd and Pb in mushroom and Cu, Zn in Soil were tested by atomic absorption spectrometer (AAS), and As in samples by atomic fluorescent light (AFL). Contents of Cd and Pb in soil were analyzed by graphite furnace AAS. The results showed that contents of Cu, Pb, Cd, and As in Termitomyces microcarpus were the highest in the tested mushroom samples, which were 135.00, 13.28, 65.30, and 1.60 mg·kg^-1 (dry biomass) respectively, and the corresponding bioconcentration factor (BCF) for Cu and Cd was 57 and 1 674 separately, which was the highest data in 13 mushroom species. The capability ofBoletus griseus for Cd accumulation was very strong with BCF of 300. when people consume the wild edible mushrooms, contents of Cd and Pb should be greatly considered.