期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基坑变形混沌特征识别与非线性预测模型研究
1
作者 苗长伟 《地理空间信息》 2023年第4期78-81,共4页
混沌理论特征识别是进行混沌时间序列分析和预测的前提。普通的线性数学算法已经无解决基坑变形所遇到的问题,为了研究基坑变形监测数据的非线性复杂问题,采用混沌非线性理论方法,首先求取基坑变形时间序列的延迟时间和嵌入维数,其次对... 混沌理论特征识别是进行混沌时间序列分析和预测的前提。普通的线性数学算法已经无解决基坑变形所遇到的问题,为了研究基坑变形监测数据的非线性复杂问题,采用混沌非线性理论方法,首先求取基坑变形时间序列的延迟时间和嵌入维数,其次对基坑监测数据进行相空间重构,最后对比分析加权一阶局域预测模型以及RBF神经网络混沌预测模型的预测结果,实验表明RBF神经网络混沌预测模型预测精度最高,同时也说明了混沌预测模型更适合短期预测。最终证明了RBF神经网络混沌预测模型应用在基坑变形监测中的可行性与有效性。 展开更多
关键词 相空间重构 混沌识别 混沌时间序列 加权一阶局域预测 rbf神经网络混沌预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部