Titanium alloys have been widely used in many industrial clusters such as automotive, aerospace and biomedical industries due to their excellent comprehensive properties. In order to obtain fine microstructures and fa...Titanium alloys have been widely used in many industrial clusters such as automotive, aerospace and biomedical industries due to their excellent comprehensive properties. In order to obtain fine microstructures and favorable properties, a well-designed multi-step thermomechanical processing(TMP) is critically needed in manufacturing of titanium components. In making of titanium components,subtransus processing is a critical step to breakdown lamellar microstructure to fine-structure in hot working process and thus plays a key role in tailoring the final microstructure and properties. To realize this goal, huge efforts have been made to investigate the mechanisms of microstructure evolution and flow behavior during the subtransus processing. This paper reviews the recent experimental and modelling progresses, which aim to provide some guidelines for the process design and microstructure tailoring for titanium alloy research community. The characteristics of the initial lamellar microstructure are presented, followed by the discussion on microstructure evolution during subtransus processing. The globularization of lamellar α is analyzed in detail from three aspects, i.e., globularization mechanism, heterogeneity and kinetics. The typical features of flow behaviors and the explanations of significant flow softening are then summarized. The recent advances in modelling of microstructure evolution and flow behaviors in the subtransus processing are also articulated. The current tantalized issues and challenges in understanding of the microstructure evolution and flow behaviors of the titanium alloys with lamellar microstructure are presented and specified in future exploration of them.展开更多
Earthquake surface rupture is the result of transformation from crustal elastic strain accumulation to permanent tectonic deformation. The surface rupture zone produced by the 2001 Kunlunshan earth- quake (Mw7.8) on t...Earthquake surface rupture is the result of transformation from crustal elastic strain accumulation to permanent tectonic deformation. The surface rupture zone produced by the 2001 Kunlunshan earth- quake (Mw7.8) on the Kusaihu segment of the Kunlun fault extends over 426 km. It consists of three relatively independent surface rupture sections: the western strike-slip section, the middle transten- sional section and the eastern strike-slip section. Hence this implies that the Kunlunshan earthquake is composed of three earthquake rupturing events, i.e. the Mw=6.8, Mw=6.2 and Mw≤7.8 events, respec- tively. The Mw≤7.8 earthquake, along the eastern section, is the main shock of the Kunlunshan earth- quake, further decomposed into four rupturing subevents. Field measurements indicate that the width of a single surface break on different sections ranges from several meters to 15 m, with a maximum value of less than 30 m. The width of the surface rupture zone that consists of en echelon breaks de- pends on its geometric structures, especially the stepover width of the secondary surface rupture zones in en echelon, displaying a basic feature of deformation localization. Consistency between the Quaternary geologic slip rate, the GPS-monitored strain rate and the localization of the surface rup- tures of the 2001 Kunlunshan earthquake may indicate that the tectonic deformation between the Ba- yan Har block and Qilian-Qaidam block in the northern Tibetan Plateau is characterized by strike-slip faulting along the limited width of the Kunlun fault, while the blocks themselves on both sides of the Kunlun fault are characterized by block motion. The localization of earthquake surface rupture zone is of great significance to determine the width of the fault-surface-rupture hazard zone, along which direct destruction will be caused by co-seismic surface rupturing along a strike-slip fault, that should be considered before the major engineering project, residental buildings and life line construction.展开更多
The most advantageous property of magnesium(Mg)alloys is their density,which is lower compared with traditional metallic materials.Mg alloys,considered the lightest metallic structural material among others,have great...The most advantageous property of magnesium(Mg)alloys is their density,which is lower compared with traditional metallic materials.Mg alloys,considered the lightest metallic structural material among others,have great potential for applications as secondary load components in the transportation and aerospace industries.The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability.Given their hexagonal close packed structure,the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twiuning and basal slips.However,for Mg alloys with shrinkage porosities and inclusions,fatigue cracks will preferentially initiate at these defects,remarkably reducing the fatigue lifetime.In this paper,some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed,in cluding the 3 followings:1)Fatigue crack initiation of as-cast Mg alloys,2)influence of microstructure on fatigue crack initiation of wrought Mg alloys,and 3)the effect of heat treatment on fatigue initiation mechanisms.Moreover,some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.展开更多
基金the support of National Natural Science Foundation of China(Nos.51605388,51875467)the Hong Kong Scholar Program(No.XJ2018010)the Young Elite Scientists Sponsorship Program by CAST(No.2018QNRC001).
文摘Titanium alloys have been widely used in many industrial clusters such as automotive, aerospace and biomedical industries due to their excellent comprehensive properties. In order to obtain fine microstructures and favorable properties, a well-designed multi-step thermomechanical processing(TMP) is critically needed in manufacturing of titanium components. In making of titanium components,subtransus processing is a critical step to breakdown lamellar microstructure to fine-structure in hot working process and thus plays a key role in tailoring the final microstructure and properties. To realize this goal, huge efforts have been made to investigate the mechanisms of microstructure evolution and flow behavior during the subtransus processing. This paper reviews the recent experimental and modelling progresses, which aim to provide some guidelines for the process design and microstructure tailoring for titanium alloy research community. The characteristics of the initial lamellar microstructure are presented, followed by the discussion on microstructure evolution during subtransus processing. The globularization of lamellar α is analyzed in detail from three aspects, i.e., globularization mechanism, heterogeneity and kinetics. The typical features of flow behaviors and the explanations of significant flow softening are then summarized. The recent advances in modelling of microstructure evolution and flow behaviors in the subtransus processing are also articulated. The current tantalized issues and challenges in understanding of the microstructure evolution and flow behaviors of the titanium alloys with lamellar microstructure are presented and specified in future exploration of them.
基金the National Natural Science Foundation of China (Grant No. 40474037)the National Basic Research Program of China (Grant No. 2004CB418401)
文摘Earthquake surface rupture is the result of transformation from crustal elastic strain accumulation to permanent tectonic deformation. The surface rupture zone produced by the 2001 Kunlunshan earth- quake (Mw7.8) on the Kusaihu segment of the Kunlun fault extends over 426 km. It consists of three relatively independent surface rupture sections: the western strike-slip section, the middle transten- sional section and the eastern strike-slip section. Hence this implies that the Kunlunshan earthquake is composed of three earthquake rupturing events, i.e. the Mw=6.8, Mw=6.2 and Mw≤7.8 events, respec- tively. The Mw≤7.8 earthquake, along the eastern section, is the main shock of the Kunlunshan earth- quake, further decomposed into four rupturing subevents. Field measurements indicate that the width of a single surface break on different sections ranges from several meters to 15 m, with a maximum value of less than 30 m. The width of the surface rupture zone that consists of en echelon breaks de- pends on its geometric structures, especially the stepover width of the secondary surface rupture zones in en echelon, displaying a basic feature of deformation localization. Consistency between the Quaternary geologic slip rate, the GPS-monitored strain rate and the localization of the surface rup- tures of the 2001 Kunlunshan earthquake may indicate that the tectonic deformation between the Ba- yan Har block and Qilian-Qaidam block in the northern Tibetan Plateau is characterized by strike-slip faulting along the limited width of the Kunlun fault, while the blocks themselves on both sides of the Kunlun fault are characterized by block motion. The localization of earthquake surface rupture zone is of great significance to determine the width of the fault-surface-rupture hazard zone, along which direct destruction will be caused by co-seismic surface rupturing along a strike-slip fault, that should be considered before the major engineering project, residental buildings and life line construction.
基金the National Natural Science Foundation of China(Grant Nos.51701129,51271183 and 51301172)Initiation Foundation of Shenyang Ligong University for Doctoral Research+2 种基金the National Basic Research Program of China(973 Program)(Grant No.2013CB632205)the National Key Research and Development Program of China(Grant No.2016YFB0301105)Innovation Fund of Institute of Metal Research,Chinese Academy of Sciences.
文摘The most advantageous property of magnesium(Mg)alloys is their density,which is lower compared with traditional metallic materials.Mg alloys,considered the lightest metallic structural material among others,have great potential for applications as secondary load components in the transportation and aerospace industries.The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability.Given their hexagonal close packed structure,the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twiuning and basal slips.However,for Mg alloys with shrinkage porosities and inclusions,fatigue cracks will preferentially initiate at these defects,remarkably reducing the fatigue lifetime.In this paper,some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed,in cluding the 3 followings:1)Fatigue crack initiation of as-cast Mg alloys,2)influence of microstructure on fatigue crack initiation of wrought Mg alloys,and 3)the effect of heat treatment on fatigue initiation mechanisms.Moreover,some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.