To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were us...To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were used to relocate the earthquake sequence by the tomoDD program, and the focal mechanism solutions and centroid depths of the M_L ≥ 3.5 events in the sequence were determined using the CAP waveform inversion method. Further, the segmental tectonic deformation characteristics of the seismogenic faults were analyzed preliminarily by using strain rosettes and areal strains(As). The results indicate:(1) The relocated M_S 7.0 Jiuzhaigou earthquake sequence displays a narrow ~ 38 km long NNW-SSE-trending zone between the NW-striking Tazang Fault and the nearly NSstriking Minjiang Fault, two branches of the East Kunlun Fault Zone. The spatial distribution of the sequence is narrow and deep for the southern segment, and relatively wide and shallow for the northern segment. The initial rupture depth of the mainshock is 12.5 km, the dominant depth range of the aftershock sequence is between 0 and 10 km with an average depth of 6.7 km. The mainshock epicenter is located in the middle of the aftershock region, showing a bilateral rupture behavior. The centroid depths of 32 M_L ≥ 3.5 events range from 3 to 12 km with a mean of about 7.3 km, consistent with the predominant focal depth of the whole sequence.(2) The geometric structure of the seismogenic fault on the southern section of the aftershock area(south of the mainshock) is relatively simple, with overall strike of ~150° and dip angle ~75°, but the dip angle and dip-orientation exhibit some variation along the segment. The seismogenic structure on the northern segment is more complicated; several faults, including the Minjiang Fault, may be responsible for the aftershock activities. The overall strike of this section is ~159° and dip angle is ~59°, illustrating a certain clockwise rotation and a smaller dip angle than the southern segment. Th展开更多
On Aug.8, 2017, an M_S 7.0 earthquake struck Jiuzhaigou, a county of Sichuan province, China. A number of investigations and studies have been conducted, some of which involved local velocity models. However, the suit...On Aug.8, 2017, an M_S 7.0 earthquake struck Jiuzhaigou, a county of Sichuan province, China. A number of investigations and studies have been conducted, some of which involved local velocity models. However, the suitability of these models has not been properly addressed. Here we collect 11 already-existing models, including those used in studies of the 2017 M_S 7.0 Jiuzhaigou earthquake,choose 10 local stations surrounding the earthquake, and employ the same technique(TRIT) to relocate the hypocenter. And furthermore, we choose a more suitable model from the 11 already-existed models by analyzing the relocation process and the relocated results for reasonability. Finally, our conclusion is that the model Fang 2018 is more suitable and the hypocenter parameters, 103.801°E,33.192°N and 15.8 km for longitude, latitude and depth, respectively, and 2017-08-08 13:19:46.66 for its origin time, based on this model should be recommended for the 2017 M_S7.0 Jiuzhaigou earthquake.展开更多
基金supported by National Science Foundation of China(41574047)National Key R&D Program of China(2018YFC150330501)
文摘To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were used to relocate the earthquake sequence by the tomoDD program, and the focal mechanism solutions and centroid depths of the M_L ≥ 3.5 events in the sequence were determined using the CAP waveform inversion method. Further, the segmental tectonic deformation characteristics of the seismogenic faults were analyzed preliminarily by using strain rosettes and areal strains(As). The results indicate:(1) The relocated M_S 7.0 Jiuzhaigou earthquake sequence displays a narrow ~ 38 km long NNW-SSE-trending zone between the NW-striking Tazang Fault and the nearly NSstriking Minjiang Fault, two branches of the East Kunlun Fault Zone. The spatial distribution of the sequence is narrow and deep for the southern segment, and relatively wide and shallow for the northern segment. The initial rupture depth of the mainshock is 12.5 km, the dominant depth range of the aftershock sequence is between 0 and 10 km with an average depth of 6.7 km. The mainshock epicenter is located in the middle of the aftershock region, showing a bilateral rupture behavior. The centroid depths of 32 M_L ≥ 3.5 events range from 3 to 12 km with a mean of about 7.3 km, consistent with the predominant focal depth of the whole sequence.(2) The geometric structure of the seismogenic fault on the southern section of the aftershock area(south of the mainshock) is relatively simple, with overall strike of ~150° and dip angle ~75°, but the dip angle and dip-orientation exhibit some variation along the segment. The seismogenic structure on the northern segment is more complicated; several faults, including the Minjiang Fault, may be responsible for the aftershock activities. The overall strike of this section is ~159° and dip angle is ~59°, illustrating a certain clockwise rotation and a smaller dip angle than the southern segment. Th
基金supported by the DQJB project (DQJB16B05) of the Institute of Geophysics,CEAthe NSFC project (41474046)
文摘On Aug.8, 2017, an M_S 7.0 earthquake struck Jiuzhaigou, a county of Sichuan province, China. A number of investigations and studies have been conducted, some of which involved local velocity models. However, the suitability of these models has not been properly addressed. Here we collect 11 already-existing models, including those used in studies of the 2017 M_S 7.0 Jiuzhaigou earthquake,choose 10 local stations surrounding the earthquake, and employ the same technique(TRIT) to relocate the hypocenter. And furthermore, we choose a more suitable model from the 11 already-existed models by analyzing the relocation process and the relocated results for reasonability. Finally, our conclusion is that the model Fang 2018 is more suitable and the hypocenter parameters, 103.801°E,33.192°N and 15.8 km for longitude, latitude and depth, respectively, and 2017-08-08 13:19:46.66 for its origin time, based on this model should be recommended for the 2017 M_S7.0 Jiuzhaigou earthquake.