本文应用大系统分解理论讨论了下面的变系数的鲁里叶问题:dx_s/dt=-a_(sδ)(t)x_δ+suma_(sj)(t)+h_s(t)f_s(σ) fromj=1to n (j≠s) (s=1,2,...n),其中σ=sumC_i(t)x_i from i=1to n,f(0)=0我们得到了此非线性变系数系统的全局稳定...本文应用大系统分解理论讨论了下面的变系数的鲁里叶问题:dx_s/dt=-a_(sδ)(t)x_δ+suma_(sj)(t)+h_s(t)f_s(σ) fromj=1to n (j≠s) (s=1,2,...n),其中σ=sumC_i(t)x_i from i=1to n,f(0)=0我们得到了此非线性变系数系统的全局稳定性的充分条件,这里所使用的方法比较简单,不需要复杂的代数运算,在应用上也比较方便。展开更多
针对高精度光电伺服稳定平台系统中摩擦和非线性干扰对跟踪精度的影响问题,采用加性分解原理将稳定平台系统分解为主系统和辅系统.主系统负责视轴的跟踪,对名义模型设计基于加速度控制的比例—微分(PD)控制器.辅系统负责视轴的稳定,并...针对高精度光电伺服稳定平台系统中摩擦和非线性干扰对跟踪精度的影响问题,采用加性分解原理将稳定平台系统分解为主系统和辅系统.主系统负责视轴的跟踪,对名义模型设计基于加速度控制的比例—微分(PD)控制器.辅系统负责视轴的稳定,并设计了非线性扩张状态观测器(nonlinear extended state observer,NESO),对等效干扰进行有效的估计和补偿;结合有限时间收敛理论和滑模控制理论设计滑模补偿器,进一步补偿未知干扰.利用李亚普诺夫理论证明系统的稳定性.Matlab仿真结果验证了本方法的有效性.展开更多
According to the peculiarities of tectonodeformation this paper systematically researches the graphic method of finite strain theory in tectonomechanics, proposes a geometrical analytic method describing the strain st...According to the peculiarities of tectonodeformation this paper systematically researches the graphic method of finite strain theory in tectonomechanics, proposes a geometrical analytic method describing the strain state of a point with metric tensor, expounds and proves the structure of deformation gradient circle, and clearly illustrates the relations of various quantities in polar decomposition theory. Finally, a simple shear deformation which often occurs in tectonodeformation was calculated through various different methods in order to explain and to compare the peculiarities among various graphic methods of finite strain.展开更多
文摘本文应用大系统分解理论讨论了下面的变系数的鲁里叶问题:dx_s/dt=-a_(sδ)(t)x_δ+suma_(sj)(t)+h_s(t)f_s(σ) fromj=1to n (j≠s) (s=1,2,...n),其中σ=sumC_i(t)x_i from i=1to n,f(0)=0我们得到了此非线性变系数系统的全局稳定性的充分条件,这里所使用的方法比较简单,不需要复杂的代数运算,在应用上也比较方便。
文摘针对高精度光电伺服稳定平台系统中摩擦和非线性干扰对跟踪精度的影响问题,采用加性分解原理将稳定平台系统分解为主系统和辅系统.主系统负责视轴的跟踪,对名义模型设计基于加速度控制的比例—微分(PD)控制器.辅系统负责视轴的稳定,并设计了非线性扩张状态观测器(nonlinear extended state observer,NESO),对等效干扰进行有效的估计和补偿;结合有限时间收敛理论和滑模控制理论设计滑模补偿器,进一步补偿未知干扰.利用李亚普诺夫理论证明系统的稳定性.Matlab仿真结果验证了本方法的有效性.
基金Project supported by the National Natural Science Foundation of China
文摘According to the peculiarities of tectonodeformation this paper systematically researches the graphic method of finite strain theory in tectonomechanics, proposes a geometrical analytic method describing the strain state of a point with metric tensor, expounds and proves the structure of deformation gradient circle, and clearly illustrates the relations of various quantities in polar decomposition theory. Finally, a simple shear deformation which often occurs in tectonodeformation was calculated through various different methods in order to explain and to compare the peculiarities among various graphic methods of finite strain.