期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合多特征的TextRank关键词抽取方法 被引量:33
1
作者 李航 唐超兰 +1 位作者 杨贤 沈婉婷 《情报杂志》 CSSCI 北大核心 2017年第8期183-187,共5页
[目的/意义]关键词提取在自然语言处理领域有着广泛的应用,如何快速准确地实现关键词的提取已经成为文本处理的关键问题。目前关键词提取方法非常多,但准确率仍有待提升。为此,提出一种结合单一文档内部结构信息、词语对于单文档和文档... [目的/意义]关键词提取在自然语言处理领域有着广泛的应用,如何快速准确地实现关键词的提取已经成为文本处理的关键问题。目前关键词提取方法非常多,但准确率仍有待提升。为此,提出一种结合单一文档内部结构信息、词语对于单文档和文档集整体的重要性的关键词抽取方法。[方法/过程]首先,根据词语的平均信息熵特征计算词语对文档集整体的重要性,利用词语的词性、位置特征计算词语对单文档中的重要性。然后,通过神经网络训练的方式优化三个特征的权重分配实现特征的融合。最后,利用三个特征计算得到词语的综合权值来改进TextRank模型词汇节点的初始权重以及概率转移矩阵,再通过迭代法实现关键词的抽取。[结果 /结论]该研究方法结合了文档集整体信息和单文档自身信息,其关键词提取的准确率较传统TextRank方法、TFIDF-TextRank方法有了明显的提高。 展开更多
关键词 textrank算法 关键词抽取 神经网络 平均信息熵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部