期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于LSTM特征模板的短文本情感要素分析与研究 被引量:11
1
作者 尹光花 刘小明 +1 位作者 张露 杨俊峰 《电子科技》 2018年第11期38-41,46,共5页
互联网短文本语言自由、灵活且缺乏规范性、要素错综复杂,使得传统的文本序列标注对情感要素抽取效果并不理想。针对此特点,文中提出一种基于长短时间记忆网络模型的互联网短文本情感要素抽取方法。主要利用长短时间记忆网络模型构建面... 互联网短文本语言自由、灵活且缺乏规范性、要素错综复杂,使得传统的文本序列标注对情感要素抽取效果并不理想。针对此特点,文中提出一种基于长短时间记忆网络模型的互联网短文本情感要素抽取方法。主要利用长短时间记忆网络模型构建面向互联网短文本情感要素抽取任务的encode-decoder序列标注框架模型,并以此为基础融入3元窗口情感特征选择,在COAE2014测评数据集上实验。实验结果表明,该模型通过情感特征注入情感要素抽取准确率达70. 7%,利用浅层机器学习模型分析情感倾向性也取得了较好的效果。 展开更多
关键词 互联网短文苓 文苓序列标注 长短时记忆网络模型 特征选择 要素抽取 机器学习模型
下载PDF
面向互联网食品文本实体关系联合抽取研究 被引量:1
2
作者 左敏 薛明慧 +1 位作者 张青川 蔡圆媛 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2022年第5期812-817,共6页
传统实体关系抽取方法中存在错误传播、实体冗余等问题,食品文本语料中存在主实体对应多个关系的特点,针对此情况,提出一种面向互联网食品文本领域的实体关系联合抽取方法。采用序列标注标签和实体关系匹配规则,将实体关系抽取任务转化... 传统实体关系抽取方法中存在错误传播、实体冗余等问题,食品文本语料中存在主实体对应多个关系的特点,针对此情况,提出一种面向互联网食品文本领域的实体关系联合抽取方法。采用序列标注标签和实体关系匹配规则,将实体关系抽取任务转化为序列标注问题;引入基于位置感知的领域词注意力机制的字词双维度语义编码向量,增强文本的语义表征;在对句子进行字词双维度表示的基础上结合双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)和条件随机场(conditional random field,CRF)构建了序列标注模型(position attention-bidirectional encoder representation from transformer,PA-BERT),实现实体关系联合抽取。对比实验证明,提出的实体关系联合抽取模型在食品数据集上的准确率比常用深度神经网络模型高出6%~11%,在食品文本实体关系抽取中是有效性的。 展开更多
关键词 实体关系抽取 文本序列标注 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部