Tetrachlorobisphenol A(TCBPA),a widely used halogenated flame retardant,is frequently detected in environmental compartments and human samples.However,unknown developmental toxicity and mechanisms limit the entire und...Tetrachlorobisphenol A(TCBPA),a widely used halogenated flame retardant,is frequently detected in environmental compartments and human samples.However,unknown developmental toxicity and mechanisms limit the entire understanding of its effects.In this study,zebrafish(Danio rerio)embryos were exposed to various concentrations of TCBPA while a combination of transcriptomics,behavioral and biochemical analyzes as well as metabolomics were applied to decipher its toxic effects and the potential mechanisms.We found that TCBPA could interfere with nervous and cardiovascular development through focal adhesion and extracellular matrix-receptor(ECM-receptor)interaction pathways through transcriptomic analysis.Behavioral and biochemical analysis results indicated abnormal swimming behavior of zebrafish larvae.Morphological observations revealed that TCBPA could cause the loss of head blood vessels.Metabolomic analysis showed that arginine-related metabolic pathways were one of the main pathways leading to TCBPA developmental toxicity.Our study demonstrated that by using omics,TCBPA was shown to have neurological and cardiovascular developmental toxicity and the underlying mechanisms were uncovered and major pathways identified.展开更多
Tetrachlorobisphenol A (TCBPA) released into the sewage may cause environmental pollution and health risk to human beings. The objective of this study was to investigate the removal ofTCBPA and bacterial community str...Tetrachlorobisphenol A (TCBPA) released into the sewage may cause environmental pollution and health risk to human beings. The objective of this study was to investigate the removal ofTCBPA and bacterial community structures in a laboratory-scale hybrid sequencing biofilm batch reactor (SBBR)- constructed wetland (CW) system. The results showed that the removal efficiency of chemical oxidation demand (COD), ammonia, total nitrogen and total phosphorus in the SBBR-CW system was 96.7%, 97.3%, 94.4%, and 8&6% respectively. At the stable operation stage, the system obtained a 71.7%±1.8% of TCBPA removal efficiency with the influent concentration at 200μg/L. Illumina MiSeq sequencing of 16S rRNA gene revealed that the presence of TCBPA not only reduced the bacterial diversity in the SBBR-CW system, but also altered the composition and structure of bacterial community. After the addition of TCBPA, Proteobacteria increased from 31.3% to 38.7%, while Acidobacteria and Parcubacteria decreased greatly in the SBBR. In contrast, Acidobacteria replaced Proteobacteria as the dominant phylum in the upper soils of CW. The results indicated that TCBPA stimulated the growth of GAOs in the SBBR without deteriorating the phosphorus removal due to the presence of sufficient carbon sources. The ammonia oxidizing bacteria, Nitrosomonas, and denitrification bacteria, Hyphomicrobium and Pseudomonas, were inhibited by TCBPA, resulting in a decreasing the removal efficiency of TN and ammonia.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22076214 and 42007226)Beijing Municipal Youth Top-Notch Talent Program(No.2018000021223ZK34).
文摘Tetrachlorobisphenol A(TCBPA),a widely used halogenated flame retardant,is frequently detected in environmental compartments and human samples.However,unknown developmental toxicity and mechanisms limit the entire understanding of its effects.In this study,zebrafish(Danio rerio)embryos were exposed to various concentrations of TCBPA while a combination of transcriptomics,behavioral and biochemical analyzes as well as metabolomics were applied to decipher its toxic effects and the potential mechanisms.We found that TCBPA could interfere with nervous and cardiovascular development through focal adhesion and extracellular matrix-receptor(ECM-receptor)interaction pathways through transcriptomic analysis.Behavioral and biochemical analysis results indicated abnormal swimming behavior of zebrafish larvae.Morphological observations revealed that TCBPA could cause the loss of head blood vessels.Metabolomic analysis showed that arginine-related metabolic pathways were one of the main pathways leading to TCBPA developmental toxicity.Our study demonstrated that by using omics,TCBPA was shown to have neurological and cardiovascular developmental toxicity and the underlying mechanisms were uncovered and major pathways identified.
基金the National Key Research and Development Program of China (Grant No. 2016YFC0401105)National Natural Science Foundation of China (Grant Nos. 51508538 and 51308319)Beijing Talented Backbones Program (No. 2015000021733G171).
文摘Tetrachlorobisphenol A (TCBPA) released into the sewage may cause environmental pollution and health risk to human beings. The objective of this study was to investigate the removal ofTCBPA and bacterial community structures in a laboratory-scale hybrid sequencing biofilm batch reactor (SBBR)- constructed wetland (CW) system. The results showed that the removal efficiency of chemical oxidation demand (COD), ammonia, total nitrogen and total phosphorus in the SBBR-CW system was 96.7%, 97.3%, 94.4%, and 8&6% respectively. At the stable operation stage, the system obtained a 71.7%±1.8% of TCBPA removal efficiency with the influent concentration at 200μg/L. Illumina MiSeq sequencing of 16S rRNA gene revealed that the presence of TCBPA not only reduced the bacterial diversity in the SBBR-CW system, but also altered the composition and structure of bacterial community. After the addition of TCBPA, Proteobacteria increased from 31.3% to 38.7%, while Acidobacteria and Parcubacteria decreased greatly in the SBBR. In contrast, Acidobacteria replaced Proteobacteria as the dominant phylum in the upper soils of CW. The results indicated that TCBPA stimulated the growth of GAOs in the SBBR without deteriorating the phosphorus removal due to the presence of sufficient carbon sources. The ammonia oxidizing bacteria, Nitrosomonas, and denitrification bacteria, Hyphomicrobium and Pseudomonas, were inhibited by TCBPA, resulting in a decreasing the removal efficiency of TN and ammonia.