Because of the inevitable debugging lag,imperfect debugging process is used to replace perfect debugging process in the analysis of software reliability growth model.Considering neither testing-effort nor testing cove...Because of the inevitable debugging lag,imperfect debugging process is used to replace perfect debugging process in the analysis of software reliability growth model.Considering neither testing-effort nor testing coverage can describe software reliability for imperfect debugging completely,by hybridizing testing-effort with testing coverage under imperfect debugging,this paper proposes a new model named GMW-LO-ID.Under the assumption that the number of faults is proportional to the current number of detected faults,this model combines generalized modified Weibull(GMW)testing-effort function with logistic(LO)testing coverage function,and inherits GMW's amazing flexibility and LO's high fitting precision.Furthermore,the fitting accuracy and predictive power are verified by two series of experiments and we can draw a conclusion that our model fits the actual failure data better and predicts the software future behavior better than other ten traditional models,which only consider one or two points of testing-effort,testing coverage and imperfect debugging.展开更多
Testing-time when a change of a stochastic characteristic of the software failure-occurrence time or software failure-occurrence time-interval is observed is called change-point. It is said that effect of the change-p...Testing-time when a change of a stochastic characteristic of the software failure-occurrence time or software failure-occurrence time-interval is observed is called change-point. It is said that effect of the change-point on the software reliability growth process influences on accuracy for software reliability assessment based on a software reliability growth model (SRGM). We propose an SRGM with the effect of the change-point based on a bivariate SRGM, in which the software reliability growth process is assumed to depend on the testing-time and testing-effort factors simultaneously, for accurate software reliability assessment. And we discuss an optimal software release problem for deriving optimal testing-effort expenditures based on our model. Further, we show numerical examples of software reliability assessment based on our bivariate SRGM and estimation of optimal testing-effort expenditures by using actual data.展开更多
We propose a software reliability growth model with testing-effort based on a continuous-state space stochastic process, such as a lognormal process, and conduct its goodness-of-fit evaluation. We also discuss a param...We propose a software reliability growth model with testing-effort based on a continuous-state space stochastic process, such as a lognormal process, and conduct its goodness-of-fit evaluation. We also discuss a parameter estimation method of our model. Then, we derive several software reliability assessment measures by the probability distribution of its solution process, and compare our model with existing continuous-state space software reliability growth models in terms of the mean square error and the Akaike’s information criterion by using actual fault count data.展开更多
Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped...Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.展开更多
In this paper, we investigate empirically the relationship between object-oriented design metrics and testability of classes. We address testability from the point of view of unit testing effort. We collected data fro...In this paper, we investigate empirically the relationship between object-oriented design metrics and testability of classes. We address testability from the point of view of unit testing effort. We collected data from three open source Java software systems for which JUnit test cases exist. To capture the testing effort of classes, we used metrics to quantify the corresponding JUnit test cases. Classes were classified, according to the required unit testing effort, in two categories: high and low. In order to evaluate the relationship between object-oriented design metrics and unit testing effort of classes, we used logistic regression methods. We used the univariate logistic regression analysis to evaluate the individual effect of each metric on the unit testing effort of classes. The multivariate logistic regression analysis was used to explore the combined effect of the metrics. The performance of the prediction models was evaluated using Receiver Operating Characteristic analysis. The results indicate that: 1) complexity, size, cohesion and (to some extent) coupling were found significant predictors of the unit testing effort of classes and 2) multivariate regression models based on object-oriented design metrics are able to accurately predict the unit testing effort of classes.展开更多
In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogene...In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogeneous Poisson process(NHPP),and it is proved that the prediction accuracy of such models could be improved by adding the describing of characterization of testing effort.However,some research work indicates that the fault detection rate(FDR) is another key factor affects final software quality.Most early NHPPbased models deal with the FDR as constant or piecewise function,which does not fit the different testing stages well.Thus,this paper first incorporates a multivariate function of FDR,which is bathtub-shaped,into the NHPP-based SRGMs considering testing effort in order to further improve performance.A new model framework is proposed,and a stepwise method is used to apply the framework with real data sets to find the optimal model.Experimental studies show that the obtained new model can provide better performance of fitting and prediction compared with other traditional SRGMs.展开更多
基金supported by the National Natural Science Foundation of China(No.U1433116)the Aviation Science Foundation of China(No.20145752033)
文摘Because of the inevitable debugging lag,imperfect debugging process is used to replace perfect debugging process in the analysis of software reliability growth model.Considering neither testing-effort nor testing coverage can describe software reliability for imperfect debugging completely,by hybridizing testing-effort with testing coverage under imperfect debugging,this paper proposes a new model named GMW-LO-ID.Under the assumption that the number of faults is proportional to the current number of detected faults,this model combines generalized modified Weibull(GMW)testing-effort function with logistic(LO)testing coverage function,and inherits GMW's amazing flexibility and LO's high fitting precision.Furthermore,the fitting accuracy and predictive power are verified by two series of experiments and we can draw a conclusion that our model fits the actual failure data better and predicts the software future behavior better than other ten traditional models,which only consider one or two points of testing-effort,testing coverage and imperfect debugging.
文摘Testing-time when a change of a stochastic characteristic of the software failure-occurrence time or software failure-occurrence time-interval is observed is called change-point. It is said that effect of the change-point on the software reliability growth process influences on accuracy for software reliability assessment based on a software reliability growth model (SRGM). We propose an SRGM with the effect of the change-point based on a bivariate SRGM, in which the software reliability growth process is assumed to depend on the testing-time and testing-effort factors simultaneously, for accurate software reliability assessment. And we discuss an optimal software release problem for deriving optimal testing-effort expenditures based on our model. Further, we show numerical examples of software reliability assessment based on our bivariate SRGM and estimation of optimal testing-effort expenditures by using actual data.
文摘We propose a software reliability growth model with testing-effort based on a continuous-state space stochastic process, such as a lognormal process, and conduct its goodness-of-fit evaluation. We also discuss a parameter estimation method of our model. Then, we derive several software reliability assessment measures by the probability distribution of its solution process, and compare our model with existing continuous-state space software reliability growth models in terms of the mean square error and the Akaike’s information criterion by using actual fault count data.
基金supported by the Pre-research Foundation of CPLA General Equipment Department
文摘Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.
文摘In this paper, we investigate empirically the relationship between object-oriented design metrics and testability of classes. We address testability from the point of view of unit testing effort. We collected data from three open source Java software systems for which JUnit test cases exist. To capture the testing effort of classes, we used metrics to quantify the corresponding JUnit test cases. Classes were classified, according to the required unit testing effort, in two categories: high and low. In order to evaluate the relationship between object-oriented design metrics and unit testing effort of classes, we used logistic regression methods. We used the univariate logistic regression analysis to evaluate the individual effect of each metric on the unit testing effort of classes. The multivariate logistic regression analysis was used to explore the combined effect of the metrics. The performance of the prediction models was evaluated using Receiver Operating Characteristic analysis. The results indicate that: 1) complexity, size, cohesion and (to some extent) coupling were found significant predictors of the unit testing effort of classes and 2) multivariate regression models based on object-oriented design metrics are able to accurately predict the unit testing effort of classes.
基金supported by the National Natural Science Foundation of China(61070220)the Anhui Provincial Natural Science Foundation(1408085MKL79)
文摘In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogeneous Poisson process(NHPP),and it is proved that the prediction accuracy of such models could be improved by adding the describing of characterization of testing effort.However,some research work indicates that the fault detection rate(FDR) is another key factor affects final software quality.Most early NHPPbased models deal with the FDR as constant or piecewise function,which does not fit the different testing stages well.Thus,this paper first incorporates a multivariate function of FDR,which is bathtub-shaped,into the NHPP-based SRGMs considering testing effort in order to further improve performance.A new model framework is proposed,and a stepwise method is used to apply the framework with real data sets to find the optimal model.Experimental studies show that the obtained new model can provide better performance of fitting and prediction compared with other traditional SRGMs.