Ternary strategy is one of the most effective methods to further boost the power conversion efficiency(PCE)of organic photovoltaic cells(OPVs).In terms of high-efficiency PM6:Y6 binary systems,there is still room to f...Ternary strategy is one of the most effective methods to further boost the power conversion efficiency(PCE)of organic photovoltaic cells(OPVs).In terms of high-efficiency PM6:Y6 binary systems,there is still room to further reduce energy_(loss)(E_(loss))through regulating molecular packing and aggregation by introducing a third component in the construction of ternary OPVs.Here we introduce a simple molecule BR1 based on an acceptor-donor-acceptor(A-D-A)structure with a wide bandgap and high crystallinity into PM6:Y6-based OPVs.It is proved that BR1 can be selectively dispersed into the donor phase in the PM6:Y6 and reduce disorder in the ternary blends,thus resulting in lower E_(loss,non-rad)and E_(loss).Furthermore,the mechanism study reveals well-develop phase separation morphology and complemented absorption spectra in the ternary blends,leading to higher charge mobility,suppressed recombination,which concurrently contributes to the significantly improved PCE of 17.23%for the ternary system compared with the binary ones(16.21%).This work provides an effective approach to improve the performance of the PM6:Y6-based OPVs by adopting a ternary strategy with a simple molecule as the third component.展开更多
Liposomes,the self-assembled phospholipid vesicles,have been extensively used in various fields such as artificial cells,drug delivery systems,biosensors and cosmetics.However,current microfluidic routes to liposomes ...Liposomes,the self-assembled phospholipid vesicles,have been extensively used in various fields such as artificial cells,drug delivery systems,biosensors and cosmetics.However,current microfluidic routes to liposomes mostly rely on water-in-oil-in-water double emulsion droplets as templates,and require complex fabrication of microfluidic devices,and tedious manipulation of multiphase fluids.Here we present a simple microfluidic approach to preparing monodisperse liposomes from oil-in-water droplets.For demonstration,we used butyl acetate-water-ethanol ternary mixtures as inner phase and an aqueous solution of surfactants as outer phase to make oil-in-water droplets,which can evolve into water-in-oil-in-water double emulsion droplets by liquid-liquid phase separation of ternary mixtures.Subsequently,the resultant water-in-oil-in-water droplets underwent a dewetting transition to form separated monodisperse liposomes and residual oil droplets,with the assistance of surfactants.The method is simple,does not require complex microfluidic devices and tedious manipulation,and provides a new platform for controllable preparation of liposomes.展开更多
The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was foun...The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two sepa- rated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respec- tively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (VM) and Stokes motion velocity (VS) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the VM/VS ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the VM/VS value for Fe(Cu,Co) drop- lets with the same size.展开更多
Ternary organic solar cells have drawn great attention because the highest power conversion efficiencies have reached -12%, showing a promising prospect for the future applications. However, most reported ternary sola...Ternary organic solar cells have drawn great attention because the highest power conversion efficiencies have reached -12%, showing a promising prospect for the future applications. However, most reported ternary solar cells focus on the increase of light absorption and the optimization of energy alignment, but ignore the importance of morphology. Herein, we summarize the morphology optimization on the ternary blends with different structural aspects, such as controlling crystallinity, crystal orientation, domain size, and domain purity. Furthermore, the fundamental mechanism of ternary solar cells which is related to the morphology has been described. The efforts here will provide a guiding role for the morphology optimization on the ternary solar cells in the future.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22005234 and 61904134)Zhejiang Lab(No.2021MC0AB02).
文摘Ternary strategy is one of the most effective methods to further boost the power conversion efficiency(PCE)of organic photovoltaic cells(OPVs).In terms of high-efficiency PM6:Y6 binary systems,there is still room to further reduce energy_(loss)(E_(loss))through regulating molecular packing and aggregation by introducing a third component in the construction of ternary OPVs.Here we introduce a simple molecule BR1 based on an acceptor-donor-acceptor(A-D-A)structure with a wide bandgap and high crystallinity into PM6:Y6-based OPVs.It is proved that BR1 can be selectively dispersed into the donor phase in the PM6:Y6 and reduce disorder in the ternary blends,thus resulting in lower E_(loss,non-rad)and E_(loss).Furthermore,the mechanism study reveals well-develop phase separation morphology and complemented absorption spectra in the ternary blends,leading to higher charge mobility,suppressed recombination,which concurrently contributes to the significantly improved PCE of 17.23%for the ternary system compared with the binary ones(16.21%).This work provides an effective approach to improve the performance of the PM6:Y6-based OPVs by adopting a ternary strategy with a simple molecule as the third component.
基金the National Natural Science Foundation of China(Grant No.22008153)Start-up Funding from Shanghai Jiao Tong University.
文摘Liposomes,the self-assembled phospholipid vesicles,have been extensively used in various fields such as artificial cells,drug delivery systems,biosensors and cosmetics.However,current microfluidic routes to liposomes mostly rely on water-in-oil-in-water double emulsion droplets as templates,and require complex fabrication of microfluidic devices,and tedious manipulation of multiphase fluids.Here we present a simple microfluidic approach to preparing monodisperse liposomes from oil-in-water droplets.For demonstration,we used butyl acetate-water-ethanol ternary mixtures as inner phase and an aqueous solution of surfactants as outer phase to make oil-in-water droplets,which can evolve into water-in-oil-in-water double emulsion droplets by liquid-liquid phase separation of ternary mixtures.Subsequently,the resultant water-in-oil-in-water droplets underwent a dewetting transition to form separated monodisperse liposomes and residual oil droplets,with the assistance of surfactants.The method is simple,does not require complex microfluidic devices and tedious manipulation,and provides a new platform for controllable preparation of liposomes.
基金the National Natural Science Foundation of China (Grant Nos. 50121101 and 50395105)the Scientific and Technological Creative Foundation of Youth in Northwestern Polytechnical University of China (Grant No. W016223)
文摘The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two sepa- rated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respec- tively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (VM) and Stokes motion velocity (VS) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the VM/VS ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the VM/VS value for Fe(Cu,Co) drop- lets with the same size.
基金financially supported by Ministry of Science and Technology(No.2016YFA0200700)the National Natural Science Foundation of China(Nos.21504066 and 21534003)
文摘Ternary organic solar cells have drawn great attention because the highest power conversion efficiencies have reached -12%, showing a promising prospect for the future applications. However, most reported ternary solar cells focus on the increase of light absorption and the optimization of energy alignment, but ignore the importance of morphology. Herein, we summarize the morphology optimization on the ternary blends with different structural aspects, such as controlling crystallinity, crystal orientation, domain size, and domain purity. Furthermore, the fundamental mechanism of ternary solar cells which is related to the morphology has been described. The efforts here will provide a guiding role for the morphology optimization on the ternary solar cells in the future.