This paper presents a model-free adaptive iterative learning control(ILC)scheme called a proportional-type ILC scheme for non-linear systems.The obvious characteristic of the proposed ILC scheme is that we can easily ...This paper presents a model-free adaptive iterative learning control(ILC)scheme called a proportional-type ILC scheme for non-linear systems.The obvious characteristic of the proposed ILC scheme is that we can easily finish the ILC task just utilising the Lipschitz constant of the system.In the proposed ILC scheme,the time-vary learning gain can be produced merely by input and output(I/O)measurements.Moreover,the convergence conclusion can be expressed by the ranges of the pseudo-partial derivative and the learning gain.In actual operation,a reasonable and useful convergence condition by a constant is also provided for selection.At last,the effectiveness of the proposed ILC scheme is shown by simulations.展开更多
The Himalayan orogen consists of three major lithologic units that are separated by two major north-dipping faults: the Lesser Himalayan Sequence (LHS) below the Main Central Thrust (MCT), the Greater Himalayan Crysta...The Himalayan orogen consists of three major lithologic units that are separated by two major north-dipping faults: the Lesser Himalayan Sequence (LHS) below the Main Central Thrust (MCT), the Greater Himalayan Crystalline Complex (GHC) above the MCT, and the Tethyan Himalayan Sequence (THS) juxtaposed by the South Tibet Detachment fault (STD) over the GHC. Due to widespread meta-morphism and intense deformation, differentiating the above three lithologic units is often difficult. This problem has been overcome by the use of Sm-Nd isotopic analysis. The previous studies suggested that the LHS can be clearly distinguished from the GHC and THS by their Nd isotope compositions. However, the lack of detailed and systematic Sm-Nd isotopic studies of the THS across the Himalaya in general has made differentiation of this unit from the nearby GHC impossible, as the two appear to share overlapping Nd compositions and model ages. To address this problem, we systematically sam-pled and analyzed Nd isotopes of the THS in southeastern Tibet directly north of Bhutan. Our study identifies two distinctive fields in a εNd -TDM plot. The first is defined by the εNd(210 Ma) values of -3.45 to -7.34 and TDM values of 1.15 to 1.29 Ga from a Late Triassic turbidite sequence, which are broadly similar to those obtained from the Lhasa block. The second field is derived from the Early Cretaceous meta-sedimentary rocks with εNd(130 Ma) values from -15.24 to -16.61 and TDM values from 1.63 to 2.00 Ga; these values are similar to those obtained from the Greater Himalayan Crystalline Complex in Bhutan directly south of our sampling traverse, which has εNd(130 Ma) values of -10.89 to -16.32 and Nd model ages (TDM) of 1.73 to 2.20 Ga. From the above observations, we suggest that the Late Triassic strata of the southeast Tibetan THS were derived from the Lhasa block in the north, while the Early Cretaceous strata of the THS were derived from a source similar to the High Himalayan Crystalline Complex or Indian craton in the south. Our inter展开更多
文摘This paper presents a model-free adaptive iterative learning control(ILC)scheme called a proportional-type ILC scheme for non-linear systems.The obvious characteristic of the proposed ILC scheme is that we can easily finish the ILC task just utilising the Lipschitz constant of the system.In the proposed ILC scheme,the time-vary learning gain can be produced merely by input and output(I/O)measurements.Moreover,the convergence conclusion can be expressed by the ranges of the pseudo-partial derivative and the learning gain.In actual operation,a reasonable and useful convergence condition by a constant is also provided for selection.At last,the effectiveness of the proposed ILC scheme is shown by simulations.
基金China University of Geosciences (Beijing)a Changjiang Fellowship from the Chinese Ministry of Education awarded to Yin An
文摘The Himalayan orogen consists of three major lithologic units that are separated by two major north-dipping faults: the Lesser Himalayan Sequence (LHS) below the Main Central Thrust (MCT), the Greater Himalayan Crystalline Complex (GHC) above the MCT, and the Tethyan Himalayan Sequence (THS) juxtaposed by the South Tibet Detachment fault (STD) over the GHC. Due to widespread meta-morphism and intense deformation, differentiating the above three lithologic units is often difficult. This problem has been overcome by the use of Sm-Nd isotopic analysis. The previous studies suggested that the LHS can be clearly distinguished from the GHC and THS by their Nd isotope compositions. However, the lack of detailed and systematic Sm-Nd isotopic studies of the THS across the Himalaya in general has made differentiation of this unit from the nearby GHC impossible, as the two appear to share overlapping Nd compositions and model ages. To address this problem, we systematically sam-pled and analyzed Nd isotopes of the THS in southeastern Tibet directly north of Bhutan. Our study identifies two distinctive fields in a εNd -TDM plot. The first is defined by the εNd(210 Ma) values of -3.45 to -7.34 and TDM values of 1.15 to 1.29 Ga from a Late Triassic turbidite sequence, which are broadly similar to those obtained from the Lhasa block. The second field is derived from the Early Cretaceous meta-sedimentary rocks with εNd(130 Ma) values from -15.24 to -16.61 and TDM values from 1.63 to 2.00 Ga; these values are similar to those obtained from the Greater Himalayan Crystalline Complex in Bhutan directly south of our sampling traverse, which has εNd(130 Ma) values of -10.89 to -16.32 and Nd model ages (TDM) of 1.73 to 2.20 Ga. From the above observations, we suggest that the Late Triassic strata of the southeast Tibetan THS were derived from the Lhasa block in the north, while the Early Cretaceous strata of the THS were derived from a source similar to the High Himalayan Crystalline Complex or Indian craton in the south. Our inter