The plant plasma membrane(PM)H^(+)-ATPase is an essential enzyme controlling plant growth and development.It is an important factor in response to abiotic and biotic stresses and is subject to tight regulation.We are ...The plant plasma membrane(PM)H^(+)-ATPase is an essential enzyme controlling plant growth and development.It is an important factor in response to abiotic and biotic stresses and is subject to tight regulation.We are in demand for new sustainable natural growth regulators and as a key enzyme for regulation of transport into the plant cell the PM H^(+)-ATPase is a potential target for these.In this review,we have evaluated the known non-protein natural compounds with regulatory effects on the PM H^(+)-ATPase,focusing on their mechanism of action and their potential as biologicals/growth regulators in plant production of future sustainable agriculture.展开更多
[Objective] The aim of the study was to determine whether phytotoxicity of TeA against Echinochloa crus-galli leaves was correlated with oxidative stress caused by generation of reactive oxygen and the changes of anti...[Objective] The aim of the study was to determine whether phytotoxicity of TeA against Echinochloa crus-galli leaves was correlated with oxidative stress caused by generation of reactive oxygen and the changes of antioxidant enzymes activity.[Method] The changes of malondialdehyde(MDA)content,hydrogen peroxide(H2O2),and activities of superoxide dismutase(SOD),glutathione reductase(GR)and catalase(CAT)were studied by leaf segment method in vitro.[Result] After the treatment of 500 μmol/L TeA,the content of MDA and H2O2 increased by 247.86% and 67.00%,respectively,indicating that the accumulation of MDA and H2O2 in E.crus-galli leaves was due to the reactive oxygen burst induced by TeA.TeA induced a significant increase in activities of SOD,GR and CAT.At 500 μmol/L TeA,activities of SOD,GR and CAT increased more than one fold compared with the control.[Conclusion] TeA could not only cause oxidative stress in leaves of E.crus-galli through the induction of reactive oxygen,but also induce the increasing of antioxidant enzyme activity.展开更多
Ten novel 5-substituted derivatives of 3-(1-hydroxyethylidene)pyrrolidine-2,4-dione were synthesized. The compounds were confirmed by IR, 1H NMR, MS and elemental analysis. The bioassay indicated that these compound...Ten novel 5-substituted derivatives of 3-(1-hydroxyethylidene)pyrrolidine-2,4-dione were synthesized. The compounds were confirmed by IR, 1H NMR, MS and elemental analysis. The bioassay indicated that these compounds showed noticeable herbicidal activities, and compounds 6f and 6j exhibited excellent inhibitory activities against the stalk of Echinochloa crusgalli, with ECso values of 94.4 and 72.7 rag/L, respectively.展开更多
Many different types of toxins are produced by the fungus, Alternaria alternata (Fr.) Keissler. Little is known, however, regarding the influence of these toxins on insects. In this study, we investigated the toxin-...Many different types of toxins are produced by the fungus, Alternaria alternata (Fr.) Keissler. Little is known, however, regarding the influence of these toxins on insects. In this study, we investigated the toxin-induced inhibitory effects of the toxin produced by A. alternata on the rose aphid, Macrosiphum rosivorum, when the toxin was applied to leaves of the rose, Rosa chinensis. The results demonstrated that the purified crude toxin was non-harmful to rose plants and rose aphids, but had an intensive inhibitory effect on the multiplication of aphids. The inhibitory index against rose aphids reached 87.99% when rose plants were sprayed with the toxin solution at a low concentration. Further results from bioassays with aphids and high performance liquid chromatography (HPLC) analyses demon- strated that tenuazonic acid (TEA) was one of the most important resistance-related active components in the crude toxin. The content of TeA was 0.1199% in the crude toxin under the HPLC method. Similar to the crude toxin, the inhibitory index of pure TeA reached 83.60% 15 d after the rose plants were sprayed with pure TeA solution at the lower concentration of 0.060 IJg/ml, while the contents of residual TeA on the surface and in the inner portion of the rose plants were only 0.04 and 0.00 ng/g fresh weight of TeA-treated rose twigs, respectively, 7 d after the treatment. Our results show that TeA, an active component in the A. alternata toxin, can induce the indirect plant-mediated re- sponses in rose plants to intensively enhance the plant's resistances against rose aphids, and the results are very helpful to understand the plant-mediated interaction between fungi and insects on their shared host plants.展开更多
基金supported by the Novo Nordic Foundatioin grant number NNF19OC0056457the Danish Council for Independent Research,Technology and Production Sciences(FTP)grant no.DFF-4184-00548 COMBAT。
文摘The plant plasma membrane(PM)H^(+)-ATPase is an essential enzyme controlling plant growth and development.It is an important factor in response to abiotic and biotic stresses and is subject to tight regulation.We are in demand for new sustainable natural growth regulators and as a key enzyme for regulation of transport into the plant cell the PM H^(+)-ATPase is a potential target for these.In this review,we have evaluated the known non-protein natural compounds with regulatory effects on the PM H^(+)-ATPase,focusing on their mechanism of action and their potential as biologicals/growth regulators in plant production of future sustainable agriculture.
基金Supported by Scientific and Technological Project of Heilongjiang Province(GC05B205)Scientific and Technological Project of Heilongjiang Land Reclamation Bureau(HNKXV-03-04-06A)~~
文摘[Objective] The aim of the study was to determine whether phytotoxicity of TeA against Echinochloa crus-galli leaves was correlated with oxidative stress caused by generation of reactive oxygen and the changes of antioxidant enzymes activity.[Method] The changes of malondialdehyde(MDA)content,hydrogen peroxide(H2O2),and activities of superoxide dismutase(SOD),glutathione reductase(GR)and catalase(CAT)were studied by leaf segment method in vitro.[Result] After the treatment of 500 μmol/L TeA,the content of MDA and H2O2 increased by 247.86% and 67.00%,respectively,indicating that the accumulation of MDA and H2O2 in E.crus-galli leaves was due to the reactive oxygen burst induced by TeA.TeA induced a significant increase in activities of SOD,GR and CAT.At 500 μmol/L TeA,activities of SOD,GR and CAT increased more than one fold compared with the control.[Conclusion] TeA could not only cause oxidative stress in leaves of E.crus-galli through the induction of reactive oxygen,but also induce the increasing of antioxidant enzyme activity.
基金supported by the National High-Tech R&D Program of China(863 Program,No. 2011AA10A206)the National Key Technologies R&D Program of China(No.2011BAE06B04)
文摘Ten novel 5-substituted derivatives of 3-(1-hydroxyethylidene)pyrrolidine-2,4-dione were synthesized. The compounds were confirmed by IR, 1H NMR, MS and elemental analysis. The bioassay indicated that these compounds showed noticeable herbicidal activities, and compounds 6f and 6j exhibited excellent inhibitory activities against the stalk of Echinochloa crusgalli, with ECso values of 94.4 and 72.7 rag/L, respectively.
基金supported by the National Natural Science Foundation of China(No.31160354)the Foundation of the Education Department of Yunnan Province in China(No.2013Y120)
文摘Many different types of toxins are produced by the fungus, Alternaria alternata (Fr.) Keissler. Little is known, however, regarding the influence of these toxins on insects. In this study, we investigated the toxin-induced inhibitory effects of the toxin produced by A. alternata on the rose aphid, Macrosiphum rosivorum, when the toxin was applied to leaves of the rose, Rosa chinensis. The results demonstrated that the purified crude toxin was non-harmful to rose plants and rose aphids, but had an intensive inhibitory effect on the multiplication of aphids. The inhibitory index against rose aphids reached 87.99% when rose plants were sprayed with the toxin solution at a low concentration. Further results from bioassays with aphids and high performance liquid chromatography (HPLC) analyses demon- strated that tenuazonic acid (TEA) was one of the most important resistance-related active components in the crude toxin. The content of TeA was 0.1199% in the crude toxin under the HPLC method. Similar to the crude toxin, the inhibitory index of pure TeA reached 83.60% 15 d after the rose plants were sprayed with pure TeA solution at the lower concentration of 0.060 IJg/ml, while the contents of residual TeA on the surface and in the inner portion of the rose plants were only 0.04 and 0.00 ng/g fresh weight of TeA-treated rose twigs, respectively, 7 d after the treatment. Our results show that TeA, an active component in the A. alternata toxin, can induce the indirect plant-mediated re- sponses in rose plants to intensively enhance the plant's resistances against rose aphids, and the results are very helpful to understand the plant-mediated interaction between fungi and insects on their shared host plants.