期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
融合小波变换和张量PCA的人脸识别算法 被引量:16
1
作者 温浩 卢朝阳 高全学 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第4期602-607,共6页
张量主成分分析(PCA)方法用于人脸识别能获得比PCA方法更高的识别率.小波变换具有良好的时频分析特性,同时还能起到降维的作用.综合利用这两个算法的优点,提出了一种新的人脸识别算法,对人脸图像先采用小波变换做预处理得到4个子带图像... 张量主成分分析(PCA)方法用于人脸识别能获得比PCA方法更高的识别率.小波变换具有良好的时频分析特性,同时还能起到降维的作用.综合利用这两个算法的优点,提出了一种新的人脸识别算法,对人脸图像先采用小波变换做预处理得到4个子带图像,然后对每个子带图像用张量PCA进行特征提取,实现人脸图像的高效识别.仿真结果表明,新算法的识别率比张量PCA方法提高了6%,识别时间为张量PCA方法的35.74%. 展开更多
关键词 人脸识别 张量主成分分析 小波变换 特征提取
下载PDF
基于扩散张量成像的帕金森病的分类研究 被引量:5
2
作者 张冉 吴世洋 +2 位作者 葛海涛 胡俊峰 巩萍 《医疗卫生装备》 CAS 2019年第6期8-12,共5页
目的:通过提取正常组与帕金森(Parkinson's disease,PD)患者组MRI扩散张量成像(diffusion tensor imaging,DTI)的图像特征实现对正常组与PD患者组的分类。方法:正常组与PD患者组各选取36例,采用3.0T MRI扫描仪进行DTI检查。首先使用... 目的:通过提取正常组与帕金森(Parkinson's disease,PD)患者组MRI扩散张量成像(diffusion tensor imaging,DTI)的图像特征实现对正常组与PD患者组的分类。方法:正常组与PD患者组各选取36例,采用3.0T MRI扫描仪进行DTI检查。首先使用PANDA软件对采集到的DTI数据进行预处理,参考WMlabel图谱和WMtract图谱提取脑白质的各向异性分数(fractional anisotropy,FA);其次采用Relief算法和主成分分析法(principal components analysis,PCA)对数据进行特征选择与降维,然后利用支持向量机(support vector machine,SVM)分类器使用留一法(leave-one-out)进行模型训练与测试;最后采用分类精度、ROC曲线及AUC值对算法进行性能评价。结果:基于WMlabel图谱,使用Relief算法获得了较高的分类精度,其分类精度为81.94%,AUC值为0.85。结论:通过分析正常组和PD组DTI数据的FA值,可以实现对PD的准确分类,有助于临床对PD的早期诊断。 展开更多
关键词 扩散张量成像 帕金森病 各向异性分数 支持向量机 RELIEF算法 主成分分析法
下载PDF
利用粒子群优化的人脸特征提取识别算法 被引量:5
3
作者 温浩 郭崇慧 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第4期48-51,118,共5页
针对如何提高人脸图像识别率问题,提出了利用粒子群优化(PSO)的人脸特征提取识别算法.采用小波变换和张量主成分分析(PCA)方法对人脸图像进行特征提取,利用PSO对提取的特征进行加权处理,根据特征的每一维元素的聚类正确率进行优化选择,... 针对如何提高人脸图像识别率问题,提出了利用粒子群优化(PSO)的人脸特征提取识别算法.采用小波变换和张量主成分分析(PCA)方法对人脸图像进行特征提取,利用PSO对提取的特征进行加权处理,根据特征的每一维元素的聚类正确率进行优化选择,从而达到对人脸提取关键性特征的目的.实验结果表明,所提算法能减小光照、表情和姿态变化的影响,在英国曼彻斯特科技大学人脸数据库上的识别率比张量PCA方法提高了12.75%. 展开更多
关键词 小波变换 张量主成分分析 粒子群优化 人脸识别
下载PDF
截断核范数低秩张量核矩阵图像修复算法
4
作者 马瑞虾 张荣国 +2 位作者 胡静 崔红艳 刘小君 《计算机技术与发展》 2023年第6期54-60,共7页
针对张量数据存在不完整和缺少项,导致图像修复过程中信息丢失的问题,提出了一种基于截断核范数和低秩张量核矩阵的图像修复算法TNN-LTKM(truncated nuclear norm low-rank tensor kernel matrix)。首先,引入张量截断核范数,对秩函数进... 针对张量数据存在不完整和缺少项,导致图像修复过程中信息丢失的问题,提出了一种基于截断核范数和低秩张量核矩阵的图像修复算法TNN-LTKM(truncated nuclear norm low-rank tensor kernel matrix)。首先,引入张量截断核范数,对秩函数进行精确逼近,以增强优化模型的鲁棒性;其次,通过增加核心矩阵核范数扩展t-SVD中的张量核范数,定义了一个新的包含张量管秩和核矩阵秩的潜在核范数,来充分提取核张量中的低秩结构,消除冗余;接下来,采用增广拉格朗日法和交替方向乘子法对上述模型进行优化求解;最后,在ZJU、Berkeley和Kodak Lossless 3个数据集上进行实验验证,取相对平方误差、峰值信噪比、结构相似度和CPU运行时间4个评价指标,与现有的6种算法对比表明,TNN-LTKM算法在低采样率下有着良好的表现。 展开更多
关键词 低秩图像修复 张量主成分分析 张量奇异值分解 矩阵核范数 张量截断核范数
下载PDF
基于L_(1−2)时空域总变分正则项的红外弱小目标检测算法
5
作者 赵德民 孙扬 +1 位作者 林再平 熊伟 《中国光学(中英文)》 EI CAS CSCD 北大核心 2023年第5期1066-1080,共15页
针对红外图像序列中复杂背景干扰下容易出现的高虚警问题,提出一种基于L_(1-2)时空域总变分正则项的红外弱小目标检测算法。首先,将红外图像序列转化为时空域红外张量块,该步骤可利用张量的高维数据结构优势关联图像序列中的时空域信息... 针对红外图像序列中复杂背景干扰下容易出现的高虚警问题,提出一种基于L_(1-2)时空域总变分正则项的红外弱小目标检测算法。首先,将红外图像序列转化为时空域红外张量块,该步骤可利用张量的高维数据结构优势关联图像序列中的时空域信息。然后,利用加权Schattenp范数和L_(1-2)时空域总变分正则项对低秩背景成分进行重构,以保留背景中起伏剧烈的边缘和角点,提高稀疏目标的重构精度。最后,将目标张量恢复为图像序列,利用自适应阈值分割方法得到最终的目标图像。与另外5种检测算法进行对比实验,结果显示,该方法的虚警率较Maxemeidan算法、Tophat算法、LIRDNet算法、DNANet算法以及WSNMSTIPT算法平均分别下降了71.4%、71.1%、68.5%、74.3%和20.47%;而在检测实时性方面,该算法耗时为Maxemeidan算法、DNANet算法以及WSNMSTIPT算法的42.4%、82.9%和28.7%。实验结果验证了该方法在检测性能上的优越性,表明该算法能够显著提高复杂背景干扰下的目标检测精度和效率。 展开更多
关键词 红外弱小目标 时空域信息 时空域总变分正则 张量主成分分析 低秩和稀疏重构
下载PDF
结合NSCT和TPCA的SAR图像目标识别 被引量:3
6
作者 张伟昌 王文政 代作松 《火力与指挥控制》 CSCD 北大核心 2020年第9期41-46,共6页
提出了一种结合非下采样轮廓波变换(NSCT)和张量主成分分析(TPCA)的合成孔径雷达(SAR)图像目标识别方法。采用NSCT对SAR图像进行分解获得多尺度、多方向的子带图像,从而为目标提供更充分的描述信息。采用TPCA对各个子带图像进行特征提取... 提出了一种结合非下采样轮廓波变换(NSCT)和张量主成分分析(TPCA)的合成孔径雷达(SAR)图像目标识别方法。采用NSCT对SAR图像进行分解获得多尺度、多方向的子带图像,从而为目标提供更充分的描述信息。采用TPCA对各个子带图像进行特征提取,降低其中的冗余。基于各个子带图像的特征矩阵,通过线性加权的方法获得测试样本与训练样本之间的距离测度。根据K近邻(K-NN)的基本思想对测试样本进行分类决策。采用MSTAR数据集设置多种实验条件对提出方法进行测试,结果反映了该方法的有效性。 展开更多
关键词 合成孔径雷达 目标识别 非下采样轮廓波变换(NSCT) 张量主成分分析(TPCA)
下载PDF
张量主成份分析算法在脑医学图像上的应用 被引量:2
7
作者 廖亮 叶海昌 王新强 《影像研究与医学应用》 2018年第19期63-66,共4页
医学影像中的CT、MRI图像诊断是目前医生确诊疾病的重要依据。另一方面,大脑作为人类最复杂也是最重要的器官之一,对于脑部图像的特征提取和分类具有重要意义。传统上对图像特征提取习惯从向量的角度出发,这样忽略了图像结构特点。为了... 医学影像中的CT、MRI图像诊断是目前医生确诊疾病的重要依据。另一方面,大脑作为人类最复杂也是最重要的器官之一,对于脑部图像的特征提取和分类具有重要意义。传统上对图像特征提取习惯从向量的角度出发,这样忽略了图像结构特点。为了解决这个问题,本文结合高维空间数据结构,以数据张量化为重点将传统的PCA算法升级为Tensor-PCA,并选择当下最流行的Simulated Brain phantom Database数据集作为本文的仿真对象,经过实验证明,数据张量化的方法在提取图像的特征上具有良好的适用性。 展开更多
关键词 张量模型 脑部医学图像 主成分分析 特征提取
下载PDF
基于块和低秩张量恢复的视频去噪方法 被引量:2
8
作者 李小利 杨晓梅 陈代斌 《计算机应用研究》 CSCD 北大核心 2017年第4期1273-1276,1280,共5页
由于采用矩阵的表示形式会破坏视频数据的原始空间结构,针对这一问题,提出了一种基于块和低秩张量恢复的视频去噪方法。首先运用自适应中值滤波器对含噪视频进行预处理,通过相似块匹配构造一个三阶张量,根据视频张量的低秩性和噪声像素... 由于采用矩阵的表示形式会破坏视频数据的原始空间结构,针对这一问题,提出了一种基于块和低秩张量恢复的视频去噪方法。首先运用自适应中值滤波器对含噪视频进行预处理,通过相似块匹配构造一个三阶张量,根据视频张量的低秩性和噪声像素的稀疏性,利用基于张量的增广拉格朗日乘子法(ALM)重建出三阶视频张量的低秩部分和稀疏部分,实现噪声的分离。该方法采用张量模型来处理视频去噪的问题,更好地保护了视频序列的高维结构特性,可以准确地去除复杂结构视频的噪声干扰。实验结果表明,相对于常用方法,该方法能准确完整地分离噪声,具有更强的视频去噪能力。 展开更多
关键词 视频去噪 张量恢复 鲁棒主成分分析 增广拉格朗日乘子法
下载PDF
Fast Tensor Principal Component Analysis via Proximal Alternating Direction Method with Vectorized Technique
9
作者 Haiyan Fan Gangyao Kuang Linbo Qiao 《Applied Mathematics》 2017年第1期77-86,共10页
This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a c... This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a convex approximation of the rank operator under mild condition. However, most nuclear norm minimization approaches are based on SVD operations. Given a matrix , the time complexity of SVD operation is O(mn2), which brings prohibitive computational complexity in large-scale problems. In this paper, an efficient and scalable algorithm for tensor principal component analysis is proposed which is called Linearized Alternating Direction Method with Vectorized technique for Tensor Principal Component Analysis (LADMVTPCA). Different from traditional matrix factorization methods, LADMVTPCA utilizes the vectorized technique to formulate the tensor as an outer product of vectors, which greatly improves the computational efficacy compared to matrix factorization method. In the experiment part, synthetic tensor data with different orders are used to empirically evaluate the proposed algorithm LADMVTPCA. Results have shown that LADMVTPCA outperforms matrix factorization based method. 展开更多
关键词 tensor principal component analysis PROXIMAL ALTERNATING Direction Method Vectorized TECHNIQUE
下载PDF
基于张量模式的降维方法研究
10
作者 庞毅 闫德勤 《吉林师范大学学报(自然科学版)》 2011年第2期44-47,共4页
经典的向量子空间是以数据流行的向量形式表示的,而在现实应用中很多是以张量模式存在的,从而提出了张量子空间.张量模式是向量模式的扩展和推广,已经广泛的应用到模式识别和数据降维等领域.主要描述了张量的定义和基本运算,对张量子空... 经典的向量子空间是以数据流行的向量形式表示的,而在现实应用中很多是以张量模式存在的,从而提出了张量子空间.张量模式是向量模式的扩展和推广,已经广泛的应用到模式识别和数据降维等领域.主要描述了张量的定义和基本运算,对张量子空间,张量逼近和张量脸进行了具体的分析,通过张量特有的分解方法得到最优解从而达到降维的目的,本文最后提出张量以后有待发展的方向. 展开更多
关键词 张量子空间 多维主成分分析 张量逼近 张量脸
下载PDF
4种张量分解方法用于人脸识别的效果对比和分析
11
作者 胡小平 《湖南城市学院学报(自然科学版)》 CAS 2017年第1期67-72,共6页
张量的分解是主成分分析(PCA)在高阶上的扩展,目前几种张量分解方法各有优缺点,难以满足PCA的所有性质.基于4种经典的张量分解方法并没有在人脸识别中进行比较分析,利用ORL人脸数据库比较了4种经典的张量分解方法.实验结果表明,张量方... 张量的分解是主成分分析(PCA)在高阶上的扩展,目前几种张量分解方法各有优缺点,难以满足PCA的所有性质.基于4种经典的张量分解方法并没有在人脸识别中进行比较分析,利用ORL人脸数据库比较了4种经典的张量分解方法.实验结果表明,张量方法在压缩率大的情况下,其性能有显著的提高.不同的张量分解方法显示理论上分析Higher-Order Orthogonal Iteration(HOOI)的拟和度最好,但这4种方法用到实际人脸数据上并没有多大差别.考虑到Higher-Order Singular Value Decomposition(HO-SVD)方法相对比较简单,人脸识别研究时可选用此方法. 展开更多
关键词 人脸识别 张量分解 主成分分析 张量
下载PDF
基于线性插值的张量步态识别算法 被引量:11
12
作者 贲晛烨 安实 +1 位作者 王健 王科俊 《计算机应用研究》 CSCD 北大核心 2012年第1期355-358,共4页
提出一种新的基于线性插值的张量步态识别算法。为了能将测试步态序列与注册的相匹配,必须使测试序列的维数与注册的一致,首先将一个周期内的步态帧经相邻帧线性插值归一到一定数目,那么单个的步态样本表现成张量的形式。张量分析采用... 提出一种新的基于线性插值的张量步态识别算法。为了能将测试步态序列与注册的相匹配,必须使测试序列的维数与注册的一致,首先将一个周期内的步态帧经相邻帧线性插值归一到一定数目,那么单个的步态样本表现成张量的形式。张量分析采用多重线性主成分分析算法,在CASIA(B)步态数据库上实验,确定单个步态张量选择一个周期比半个周期更有效。该方法得到了令人鼓舞的识别效果。 展开更多
关键词 步态识别 线性插值 张量表达 多重线性主成分分析
下载PDF
变转速下L_(1,1,2)范数与张量核范数联合约束的TRPCA滚动轴承故障特征提取方法
13
作者 王冉 曹徐 +1 位作者 张军武 余亮 《振动与冲击》 EI CSCD 北大核心 2024年第7期84-93,共10页
滚动轴承作为旋转机械设备的重要部件之一,其工作状态直接影响旋转设备的运行安全,因此其故障特征的有效提取对于保障机械设备正常运行具有重要的意义。实际应用中滚动轴承通常以变化的速度运行,并且单一传感器采集的轴承的非平稳信号... 滚动轴承作为旋转机械设备的重要部件之一,其工作状态直接影响旋转设备的运行安全,因此其故障特征的有效提取对于保障机械设备正常运行具有重要的意义。实际应用中滚动轴承通常以变化的速度运行,并且单一传感器采集的轴承的非平稳信号往往被严重的背景噪声覆盖,使得故障特征的提取非常困难。为了解决这一问题,提出一种变转速下L_(1,1,2)范数与张量核范数联合约束的张量主成分分析(tensor robust principal component analysis,TRPCA)滚动轴承故障特征提取方法。首先,使用时频表示(time-frequency representation,TFR)作为正向切片构建张量,分别探讨滚动轴承时变故障特征在张量域中的管稀疏性和背景噪声在张量域中的低管秩性。进而使用L_(1,1,2)范数与张量核范数联合约束的TRPCA对故障特征张量进行提取,得到管稀疏的故障特征张量。最后将提取的故障特征张量在通道索引中进行融合,得到能够有效表征故障特征的时频表示。仿真和试验分析验证了该方法在轴承故障特征提取中的有效性。 展开更多
关键词 张量 故障特征提取 变转速工况 张量主成分分析(TRPCA) 管稀疏
下载PDF
增强的张量鲁棒主成分分析模型及其应用 被引量:2
14
作者 赵奉营 杨宏伟 赵丽娜 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第4期105-116,共12页
鲁棒主成分分析(RPCA)是处理图像恢复和背景建模问题的常用模型。针对原始RPCA及其改进模型对输入数据低秩结构的依赖性过强问题,提出一个增强的张量鲁棒主成分分析模型(E-TRPCA)并构造了一个新的增强张量核范数(E-TNN)正则项。E-TNN基... 鲁棒主成分分析(RPCA)是处理图像恢复和背景建模问题的常用模型。针对原始RPCA及其改进模型对输入数据低秩结构的依赖性过强问题,提出一个增强的张量鲁棒主成分分析模型(E-TRPCA)并构造了一个新的增强张量核范数(E-TNN)正则项。E-TNN基于张量数据的低维子空间投影约束其低秩性,可以更真实地反映张量数据的潜在结构,增强模型的泛化性。利用交替方向乘子算法(ADMM)对目标函数进行优化求解,在图像去噪和背景建模上的实验结果表明所提方法在图像恢复效果和运行时间方面要优于当前的其他方法。 展开更多
关键词 张量鲁棒主成分分析 低秩张量恢复 增强张量核范数 张量分解
下载PDF
基于非相关多线性主成分分析的人脸识别算法 被引量:5
15
作者 杨凌云 秦岸 《无线电通信技术》 2016年第1期73-75,98,共4页
针对在人脸识别算法中,维数的增加往往会给算法的运算带来沉重负担的问题,提出了一种新的基于非相关多线性主成分分析(UMPCA)和线性判别分析(LDA)的人脸识别算法,算法在保证在降维的时候保留尽可能多的内部结构信息。UMPCA通过一张量至... 针对在人脸识别算法中,维数的增加往往会给算法的运算带来沉重负担的问题,提出了一种新的基于非相关多线性主成分分析(UMPCA)和线性判别分析(LDA)的人脸识别算法,算法在保证在降维的时候保留尽可能多的内部结构信息。UMPCA通过一张量至向量的过程,可直接获取原张量数据的绝大部分非相关特征,提取的特征再通过经典算法LDA处理。利用AT&T人脸数据库对该算法进行了实验,实验数据分析显示该算法优于其他同类算法。 展开更多
关键词 张量 非相关多线性主成分分析(UMPCA) 线性判别分析(LDA) 特征提取
下载PDF
脑机接口中多线性主成分分析的张量特征提取 被引量:4
16
作者 王金甲 杨亮 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2015年第3期526-530,共5页
脑机接口(BCI)可以直接通过脑电(EEG)信号控制外部设备。本文针对传统主成分分析(PCA)和二维主成分分析(2DPCA)处理多通道EEG信号的局限性,提出了多线性主成分分析(MPCA)的张量特征提取和分类框架。首先生成张量EEG数据,然后进行张量降... 脑机接口(BCI)可以直接通过脑电(EEG)信号控制外部设备。本文针对传统主成分分析(PCA)和二维主成分分析(2DPCA)处理多通道EEG信号的局限性,提出了多线性主成分分析(MPCA)的张量特征提取和分类框架。首先生成张量EEG数据,然后进行张量降维并提取特征,最后用Fisher线性判别分析分类器进行分类。实验中将新方法应用到BCI competitionⅡ数据集4和BCI competitionⅣ数据集3,分别使用了EEG数据的时空二阶张量表示形式和时空频三阶张量表示形式,通过对可调参数多次调试,取得了高于其它同类降维方法的最佳结果。二阶输入最高正确率分别达到81.0%和40.1%,三阶输入分别达到76.0%和43.5%。 展开更多
关键词 脑机接口 张量 多线性主成分分析 特征提取 多通道脑电信号
原文传递
基于张量鲁棒主成分分析的视网膜眼底图像序列变化检测
17
作者 赵星 白建豪 傅迎华 《信息与控制》 CSCD 北大核心 2023年第1期115-128,共14页
在计算机辅助诊断系统中,视网膜眼底图像序列的变化检测是一项重要且具有挑战性的任务。针对视网膜眼底图像序列采样帧少、光照干扰大、难以获得稳健的背景模型,提出了一种基于张量鲁棒主成分分析(tensor robust principal component an... 在计算机辅助诊断系统中,视网膜眼底图像序列的变化检测是一项重要且具有挑战性的任务。针对视网膜眼底图像序列采样帧少、光照干扰大、难以获得稳健的背景模型,提出了一种基于张量鲁棒主成分分析(tensor robust principal component analysis,TRPCA)的变化检测方法。该方法以TRPCA为模型,通过对序列背景扩充,再利用张量分解而获得变化区域:首先,先选择出序列中最接近正常状态的一张图像作为背景模型;然后,通过预处理将单帧背景模型扩张成多帧背景使得背景模型包含更丰富的光照变化;接着,将整个序列建模为一个3维张量体;最后,利用总变分约束背景模型和变化区域的时空连续性,通过Tucker分解分离出背景模型,获得变化区域。实验结果表明,与基于矩阵的鲁棒主成分分析(matrix robust principal component analysis,Matrix RPCA)方法,Masked-RPCA方法以及不加总变分约束的TRPCA方法相比,基于总变分约束的TRPCA方法能够更准确地分离出变化区域,对血管和光照干扰更具有鲁棒性。 展开更多
关键词 变化检测 视网膜眼底图像序列 张量鲁棒主成分分析 Tucker分解
原文传递
F范数度量下的鲁棒张量低维表征
18
作者 王肖锋 石乐岩 +2 位作者 杨璐 刘军 周海波 《自动化学报》 EI CAS CSCD 北大核心 2023年第8期1799-1812,共14页
张量主成分分析(Tensor principal component analysis, TPCA)在彩色图像低维表征领域得到广泛深入研究,采用F范数平方作为低维投影的距离度量方式,表征含离群数据和噪声图像的鲁棒性较弱.L1范数能够抑制噪声的影响,但所获的低维投影数... 张量主成分分析(Tensor principal component analysis, TPCA)在彩色图像低维表征领域得到广泛深入研究,采用F范数平方作为低维投影的距离度量方式,表征含离群数据和噪声图像的鲁棒性较弱.L1范数能够抑制噪声的影响,但所获的低维投影数据缺乏重构误差约束,其局部表征能力也较弱.针对上述问题,利用F范数作为目标函数的距离度量方式,提出一种基于F范数的分块张量主成分分析算法(Block TPCA withF-norm,BlockTPCA-F),提高张量低维表征的鲁棒性.考虑到同时约束投影距离与重构误差,提出一种基于比例F范数的分块张量主成分分析算法(Block TPCA with proportional F-norm, BlockTPCA-PF),其最大化投影距离与最小化重构误差均得到了优化.然后,给出其贪婪的求解算法,并对其收敛性进行理论证明.最后,对包含不同噪声块和具有实际遮挡的彩色人脸数据集进行实验,结果表明,所提算法在平均重构误差、图像重构与分类率等方面均得到明显提升,在张量低维表征中具有较强的鲁棒性. 展开更多
关键词 张量主成分分析 低维表征 特征提取 鲁棒性 重构误差
下载PDF
基于多尺度张量类标子空间的人脸识别算法 被引量:4
19
作者 王仕民 叶继华 +2 位作者 程柏良 王明文 胡涛 《山东科技大学学报(自然科学版)》 CAS 2015年第4期55-61,共7页
提出一种基于多尺度张量类标子空间的人脸特征提取算法,提高人脸识别对光照的鲁棒性,同时不破坏原始数据固有的高阶结构和数据之间的相关性。采用多尺度小波变换组建人脸三维张量样本,将三维人脸张量空间投影到低维张量子空间,对高维人... 提出一种基于多尺度张量类标子空间的人脸特征提取算法,提高人脸识别对光照的鲁棒性,同时不破坏原始数据固有的高阶结构和数据之间的相关性。采用多尺度小波变换组建人脸三维张量样本,将三维人脸张量空间投影到低维张量子空间,对高维人脸进行降维和特征提取,应用多线性主成分类标算法对样本进行类标号,同时使用最近邻算法完成人脸识别。利用CAS-PEAL-R1东方人脸库进行评测,实验结果表明,该识别算法比经典的主成分分析、线性判别分析和多尺度Gabor识别算法具有更好的识别效果。 展开更多
关键词 人脸识别 多尺度变换 张量子空间 多线性主成分分析 类标
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部