Following the basic theory of protecting gas-reservoirs from damage with the temporary bridging technology,inert calcium carbonate (CaCO3) particles,whose diameter is consistent with the size of pores or apertures in ...Following the basic theory of protecting gas-reservoirs from damage with the temporary bridging technology,inert calcium carbonate (CaCO3) particles,whose diameter is consistent with the size of pores or apertures in the reservoir,were selected as the bridging agent,and modified resolvable starch was selected as filtration loss reducing particles to form the non-clay low damage temporary bridging drilling/completion fluids system (NLTDFS). Under the simulated condition of the well bottom during real drilling,NLTDFS was used to conduct dynamic and static damage experiments of cores for 48 hours,respectively,and then the experimented cores were permeated with pure nitrogen from the undamaged end to the damaged one to measure their recovery of permeability. The results showed that the permeability recovery rate of the core reached 90% or so,and the damaged depth was less than 1 cm,which demonstrates that NLTDFS has higher temporary bridging effectiveness and lower damage to the gas-reservoir than other drilling fluids system. NLTDFS has been used to drill many horizontal wells,and four of them have obtained high yield of natural gas. The yield of natural gas of LP1 well reached 85×104 m3/day after completion with the rump pipe. The formation of the stable well wall and smooth drilling led to an API loss less than 4 mL and an HTHP loss less than 15 mL.展开更多
文摘Following the basic theory of protecting gas-reservoirs from damage with the temporary bridging technology,inert calcium carbonate (CaCO3) particles,whose diameter is consistent with the size of pores or apertures in the reservoir,were selected as the bridging agent,and modified resolvable starch was selected as filtration loss reducing particles to form the non-clay low damage temporary bridging drilling/completion fluids system (NLTDFS). Under the simulated condition of the well bottom during real drilling,NLTDFS was used to conduct dynamic and static damage experiments of cores for 48 hours,respectively,and then the experimented cores were permeated with pure nitrogen from the undamaged end to the damaged one to measure their recovery of permeability. The results showed that the permeability recovery rate of the core reached 90% or so,and the damaged depth was less than 1 cm,which demonstrates that NLTDFS has higher temporary bridging effectiveness and lower damage to the gas-reservoir than other drilling fluids system. NLTDFS has been used to drill many horizontal wells,and four of them have obtained high yield of natural gas. The yield of natural gas of LP1 well reached 85×104 m3/day after completion with the rump pipe. The formation of the stable well wall and smooth drilling led to an API loss less than 4 mL and an HTHP loss less than 15 mL.