Background Previous neuroimaging studies primarily focused on the spatial distribution of acupuncture needling stimulation. However, a salient feature of acupuncture was its long-lasting effect. This study attempted t...Background Previous neuroimaging studies primarily focused on the spatial distribution of acupuncture needling stimulation. However, a salient feature of acupuncture was its long-lasting effect. This study attempted to detect the spatial-temporal neural responses evoked by acupuncture at an analgesia acupoint ST36 by using magnetoencephalography. To further verify its functional specificity, we also adopted acupuncture at Pericardium 6 and nonacupoint as separated controls.Methods Forty-two college students, all right-handed and acupuncture naive, participated in this study. Every participant received only one acupoint stimulation, resulting in 14 subjects in one group. Both magnetoencephalography data (151-channel whole-head system) and structural functional magnetic resonance imaging data (3D sequence with a voxel size of 1 mm3 for anatomical localization) were collected for each subject. All processing procedures were performed in BrainStorm Toolbox.Results Acupuncture at ST36 showed a significantly time-varied brain activities with different onset time. Our results presented that acupuncture at different acupoints (or comparing with nonacupoint) can specifically induce neural responses in different brain areas-acupuncture at ST36 can specifically induce the neural responses of pain-inhibition areas, while acupuncture at PC6 can specifically induce the activities of the insula and amygdala.Conclusions In the present study, we attempted to detect the temporal neural responses underlying the functional specificity of acupuncture at ST36, using acupoint belonging to different meridians and non-acupoint with efficacy-irreverent as separate controls. The specific neural substrates involving acupuncture at different acupoints may be related to its functional specificity in clinical settings.展开更多
Soil salinization is a serious ecological problem worldwide and information regarding the salt tolerance mechanisms of Salix is scarce.To elucidate the dynamic changes in the molecular mechanisms of Salix under salt s...Soil salinization is a serious ecological problem worldwide and information regarding the salt tolerance mechanisms of Salix is scarce.To elucidate the dynamic changes in the molecular mechanisms of Salix under salt stress,we generated gene expression profiles and examined changes in the expression of those genes.RNA-Seq was used to produce six cDNA libraries constructed from the leaves of Salix ×jiangsuensis CL‘J2345’treated with NaCl for 0,2,6,12,24 and 48 h.In total,249 million clean reads were assembled into 12,739 unigenes,all of which were clustered into 10 profiles based on their temporal expression patterns.KEGG analysis revealed that as an early defense response,the biosynthesis pathways of cutin,suberin and wax,which are involved in cell wall structure,were activated beginning at 2 h.The expression of secondary metabolism genes,including those involved in the phenylpropanoid,flavonoid,stilbenoid,diarylheptanoid and gingerol pathways,peaked at 6 h and 24 h;the upregulated genes were mainly involved in plant hormone pathways and beta-alanine,galactose and betalain metabolism.We identified roles of key phytohormones and found ETH to be the major signaling molecule activating TFs at 12 h;ETH,ABA,IAA and SA were the key molecules at 24 h.Moreover,we found that the upregulated genes were associated with elevated levels of amino acids,sucrose,inositol,stress proteins and ROS-scavenging enzymes,contributing to the maintenance of water balance.This research constitutes the first detailed analysis of salt stress-related mechanisms in Salix and identifies potential targets for genetic manipulation to improve yields.展开更多
基金This work was supported by the grants from the National Key Basic Research and Development Program "973" Project (No. 2007CB512503), the National Natural Science Foundation of China (Nos. 30873462, 81071137, 81071217, 30770617 and 81071139), and Program for New Century Excellent Talents in University (No. NCET-08-0801).
文摘Background Previous neuroimaging studies primarily focused on the spatial distribution of acupuncture needling stimulation. However, a salient feature of acupuncture was its long-lasting effect. This study attempted to detect the spatial-temporal neural responses evoked by acupuncture at an analgesia acupoint ST36 by using magnetoencephalography. To further verify its functional specificity, we also adopted acupuncture at Pericardium 6 and nonacupoint as separated controls.Methods Forty-two college students, all right-handed and acupuncture naive, participated in this study. Every participant received only one acupoint stimulation, resulting in 14 subjects in one group. Both magnetoencephalography data (151-channel whole-head system) and structural functional magnetic resonance imaging data (3D sequence with a voxel size of 1 mm3 for anatomical localization) were collected for each subject. All processing procedures were performed in BrainStorm Toolbox.Results Acupuncture at ST36 showed a significantly time-varied brain activities with different onset time. Our results presented that acupuncture at different acupoints (or comparing with nonacupoint) can specifically induce neural responses in different brain areas-acupuncture at ST36 can specifically induce the neural responses of pain-inhibition areas, while acupuncture at PC6 can specifically induce the activities of the insula and amygdala.Conclusions In the present study, we attempted to detect the temporal neural responses underlying the functional specificity of acupuncture at ST36, using acupoint belonging to different meridians and non-acupoint with efficacy-irreverent as separate controls. The specific neural substrates involving acupuncture at different acupoints may be related to its functional specificity in clinical settings.
基金The work was supported by the National Natural Science Foundation of China(31400572)the Jiangsu Provincial Natural Science Foundation(BK20141039)National Natural Science Foundation of China(31300556).
文摘Soil salinization is a serious ecological problem worldwide and information regarding the salt tolerance mechanisms of Salix is scarce.To elucidate the dynamic changes in the molecular mechanisms of Salix under salt stress,we generated gene expression profiles and examined changes in the expression of those genes.RNA-Seq was used to produce six cDNA libraries constructed from the leaves of Salix ×jiangsuensis CL‘J2345’treated with NaCl for 0,2,6,12,24 and 48 h.In total,249 million clean reads were assembled into 12,739 unigenes,all of which were clustered into 10 profiles based on their temporal expression patterns.KEGG analysis revealed that as an early defense response,the biosynthesis pathways of cutin,suberin and wax,which are involved in cell wall structure,were activated beginning at 2 h.The expression of secondary metabolism genes,including those involved in the phenylpropanoid,flavonoid,stilbenoid,diarylheptanoid and gingerol pathways,peaked at 6 h and 24 h;the upregulated genes were mainly involved in plant hormone pathways and beta-alanine,galactose and betalain metabolism.We identified roles of key phytohormones and found ETH to be the major signaling molecule activating TFs at 12 h;ETH,ABA,IAA and SA were the key molecules at 24 h.Moreover,we found that the upregulated genes were associated with elevated levels of amino acids,sucrose,inositol,stress proteins and ROS-scavenging enzymes,contributing to the maintenance of water balance.This research constitutes the first detailed analysis of salt stress-related mechanisms in Salix and identifies potential targets for genetic manipulation to improve yields.