期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种基于神经网络的时间序列自适应建模和预测方法 被引量:7
1
作者 杨璐 黄梯云 洪家荣 《决策与决策支持系统》 1996年第2期69-75,共7页
本文首先探讨了基于神经网络的时间序列预测模型的建立机制,然后为了提高预测精度,本文提出了将时差法和误差反向传播法相结合进行时间序列的自适应建模和预测。对外汇汇率问题进行的模型构造和预测的结果表明,该方法的预测误差明显... 本文首先探讨了基于神经网络的时间序列预测模型的建立机制,然后为了提高预测精度,本文提出了将时差法和误差反向传播法相结合进行时间序列的自适应建模和预测。对外汇汇率问题进行的模型构造和预测的结果表明,该方法的预测误差明显减小。 展开更多
关键词 神经网络 时间序列 预测 时差法 误差反向传播
下载PDF
用加强学习方法解决基于神经网络的时序实时建模问题 被引量:2
2
作者 杨璐 洪家荣 黄梯云 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 1996年第4期136-139,共4页
提出了将基于神经网络的时序一步预测模型的实时建模预测问题归结为加强学习问题,从而提出用时差法和误差反向传播法分别解决时间信用赋值问题和结构信用赋值问题.实验结果表明,该方法可以提高预测精度.
关键词 神经网络 加强学习 时间序列预测 经济预测
下载PDF
Adaptive Modeling and Forecasting of Time Series by Combining the Methods of Temporal Differences with Neural Networks
3
作者 杨璐 洪家荣 黄梯云 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第1期94-98,共5页
This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differen... This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differences methods with back-propagation algorithm for updating the parameters continuously on the basis of recent data. This method can make the neural network model fit the recent characteristic of the time series as close as possible, therefore improves the prediction accuracy. We built models and made predictions for the sunspot series. The prediction results of adaptive modeling method are better than that of non-adaptive modeling methods. 展开更多
关键词 ss: NEURAL network TIME SERIES forecasting temporal differences methods
下载PDF
一种加速时间差分算法收敛的方法 被引量:3
4
作者 何斌 刘全 +3 位作者 张琳琳 时圣苗 陈红名 闫岩 《自动化学报》 EI CAS CSCD 北大核心 2021年第7期1679-1688,共10页
时间差分算法(Temporal difference methods,TD)是一类模型无关的强化学习算法.该算法拥有较低的方差和可以在线(On-line)学习的优点,得到了广泛的应用.但对于一种给定的TD算法,往往只能通过调整步长参数或其他超参数来加速收敛,这也就... 时间差分算法(Temporal difference methods,TD)是一类模型无关的强化学习算法.该算法拥有较低的方差和可以在线(On-line)学习的优点,得到了广泛的应用.但对于一种给定的TD算法,往往只能通过调整步长参数或其他超参数来加速收敛,这也就造成了加速TD算法收敛的方法匮乏.针对此问题提出了一种利用蒙特卡洛算法(Monte Carlo methods,MC)来加速TD算法收敛的方法(Accelerate TD by MC,ATDMC).该方法不仅可以适用于绝大部分的TD算法,而且不需要改变在线学习的方式.为了证明方法的有效性,分别在同策略(On-policy)评估、异策略(Off-policy)评估和控制(Control)三个方面进行了实验.实验结果表明ATDMC方法可以有效地加速各类TD算法. 展开更多
关键词 强化学习 时间差分算法 蒙特卡罗算法 加速收敛
下载PDF
A Collaborative Machine Learning Scheme for Traffic Allocation and Load Balancing for URLLC Service in 5G and Beyond
5
作者 Andreas G. Papidas George C. Polyzos 《Journal of Computer and Communications》 2023年第11期197-207,共11页
Key challenges for 5G and Beyond networks relate with the requirements for exceptionally low latency, high reliability, and extremely high data rates. The Ultra-Reliable Low Latency Communication (URLLC) use case is t... Key challenges for 5G and Beyond networks relate with the requirements for exceptionally low latency, high reliability, and extremely high data rates. The Ultra-Reliable Low Latency Communication (URLLC) use case is the trickiest to support and current research is focused on physical or MAC layer solutions, while proposals focused on the network layer using Machine Learning (ML) and Artificial Intelligence (AI) algorithms running on base stations and User Equipment (UE) or Internet of Things (IoT) devices are in early stages. In this paper, we describe the operation rationale of the most recent relevant ML algorithms and techniques, and we propose and validate ML algorithms running on both cells (base stations/gNBs) and UEs or IoT devices to handle URLLC service control. One ML algorithm runs on base stations to evaluate latency demands and offload traffic in case of need, while another lightweight algorithm runs on UEs and IoT devices to rank cells with the best URLLC service in real-time to indicate the best one cell for a UE or IoT device to camp. We show that the interplay of these algorithms leads to good service control and eventually optimal load allocation, under slow load mobility. . 展开更多
关键词 5G and B5G Networks Ultra Reliable Low Latency Communications (URLLC) Machine Learning (ML) for 5G temporal difference methods (TDM) Monte Carlo methods Policy Gradient methods
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部