Though many studies have focused on the causes of shifts in trend of temperature, whether the response of vegetation growth to temperature has changed is still not very clear. In this study, we analyzed the spatial fe...Though many studies have focused on the causes of shifts in trend of temperature, whether the response of vegetation growth to temperature has changed is still not very clear. In this study, we analyzed the spatial features of the trend changes of temperature during the growing season and the response of vegetation growth in China based on observed climatic data and the normalized difference vegetation index (NDVI) from 1984 to 2011. An obvious warming to cooling shift during growing season from the period 1984-1997 to the period 1998-2011 was identified in the northern and northeastern regions of China, whereas a totally converse shift was observed in the southern and western regions, suggesting large spatial heterogeneity of changes of the trend of growing season temperature throughout China. China as a whole, a significant positive relationship between vegetation growth and tem- perature during 1984 to 1997 has been greatly weakened during 1998-2011. This change of response of vegetation growth to temperature has also been confirmed by Granger causality test. On regional scales, obvious shifts in relationship between vegetation growth and tem- perature were identified in temperate desert region and rainforest region. Furthermore, by comprehensively analyzing of the relationship between NDVI and climate variables, an over- all reduction of impacts of climate factors on vegetation growth was identified over China during recent years, indicating enhanced influences from human associated activities.展开更多
Despite the well-documented effects of global climate change on terrestrial species' ranges, eco-geographical regions as the regional scale of ecosystems have been poorly studied especially in China with diverse clim...Despite the well-documented effects of global climate change on terrestrial species' ranges, eco-geographical regions as the regional scale of ecosystems have been poorly studied especially in China with diverse climate and ecosystems. Here we analyse the shift of temperature zones in eco-geographical study over China using projected future climate scenario. Projected climate data with high resolution during 1961-2080 were simulated using regional climate model of PRECIS. The number of days with mean daily temperature above 10℃ and the mean temperature of January are usually regarded as the principal criteria to indicate temperature zones, which are sensitive to climate change. Shifts due to future climate change were calculated by comparing the latitude of grid cells for the future borderline of one temperature zone with that for baseline period (1961-1990). Results indicated that the ranges of Tropical, Subtropical, Warm Temperate and Plateau Temperate Zones would be enlarged and the ranges of Cold Temperate, Temperate and Plateau Sub-cold Zones would be reduced. Cold Temperate Zone would probably disappear at late this century. North bor- derlines of temperature zones would shift northward under projected future climate change, especially in East China. Farthest shifts of the north boundaries of Plateau Temperate, Subtropical and Warm Temperate Zones would be 3.1°, 5.3° and 6.6° latitude respectively. Moreover, northward shift would be more notably in northern China as future temperature increased.展开更多
The production of elastase by Bacillus sp. EL31410 at various temperatures was investigated. In order to study the effect of temperature on elastase fermentation, different cultivation temperatures, ranging from 39 ℃...The production of elastase by Bacillus sp. EL31410 at various temperatures was investigated. In order to study the effect of temperature on elastase fermentation, different cultivation temperatures, ranging from 39 ℃ to 28 ℃, were evaluated in shake flask. The result indicated that 37 ℃ was best for cell growth at earlier stage; while maximum elastase activity was obtained when the cells were cultivated at 30 ℃. This result was verified by batch fermentation in 5-L bio-reactor under 37 ℃ and 30 ℃ temperature, respectively. The specific cell growth rate at 37 ℃ was higher than that at 30 ℃ during earlier stage of cultivation. The maximum value [5.5 U/(h-g DCW)] of elastase formation rate occurred at 24 h at 30 ℃ compared to 4.6 U/(h-g DCW) at 30 h at 37 ℃. Based on these results, two-stage temperature shift strategy and oscillatory temperature cultivation mode were evaluated in the next study. When compared to single temperature of 37 ℃ or 30 ℃, both two-stage temperature shift strategy and oscillatory temperature strategy improved biomass but did not yield the same result as expected for elastase production. The maximum biomass (both 8.6 g/L) was achieved at 30 h at 37 ℃, but at 42 h using two-stage temperature cultivation strategy. The highest elastase production (652 U/ml) was observed at 30 ℃ in batch process. It was concluded that cultivation at constant temperature of 30 ℃ was appropriate for elastase production by Bacillus sp. EL31410.展开更多
基金Foundation: National Natural Science Foundation of China, No.41671083, No.41301076
文摘Though many studies have focused on the causes of shifts in trend of temperature, whether the response of vegetation growth to temperature has changed is still not very clear. In this study, we analyzed the spatial features of the trend changes of temperature during the growing season and the response of vegetation growth in China based on observed climatic data and the normalized difference vegetation index (NDVI) from 1984 to 2011. An obvious warming to cooling shift during growing season from the period 1984-1997 to the period 1998-2011 was identified in the northern and northeastern regions of China, whereas a totally converse shift was observed in the southern and western regions, suggesting large spatial heterogeneity of changes of the trend of growing season temperature throughout China. China as a whole, a significant positive relationship between vegetation growth and tem- perature during 1984 to 1997 has been greatly weakened during 1998-2011. This change of response of vegetation growth to temperature has also been confirmed by Granger causality test. On regional scales, obvious shifts in relationship between vegetation growth and tem- perature were identified in temperate desert region and rainforest region. Furthermore, by comprehensively analyzing of the relationship between NDVI and climate variables, an over- all reduction of impacts of climate factors on vegetation growth was identified over China during recent years, indicating enhanced influences from human associated activities.
基金National Natural Science Foundation of China, No. 40771016 National Scientific and Technical Supporting Programs during the 11 th Five-Year Plan of China, No.2007BACO3A02
文摘Despite the well-documented effects of global climate change on terrestrial species' ranges, eco-geographical regions as the regional scale of ecosystems have been poorly studied especially in China with diverse climate and ecosystems. Here we analyse the shift of temperature zones in eco-geographical study over China using projected future climate scenario. Projected climate data with high resolution during 1961-2080 were simulated using regional climate model of PRECIS. The number of days with mean daily temperature above 10℃ and the mean temperature of January are usually regarded as the principal criteria to indicate temperature zones, which are sensitive to climate change. Shifts due to future climate change were calculated by comparing the latitude of grid cells for the future borderline of one temperature zone with that for baseline period (1961-1990). Results indicated that the ranges of Tropical, Subtropical, Warm Temperate and Plateau Temperate Zones would be enlarged and the ranges of Cold Temperate, Temperate and Plateau Sub-cold Zones would be reduced. Cold Temperate Zone would probably disappear at late this century. North bor- derlines of temperature zones would shift northward under projected future climate change, especially in East China. Farthest shifts of the north boundaries of Plateau Temperate, Subtropical and Warm Temperate Zones would be 3.1°, 5.3° and 6.6° latitude respectively. Moreover, northward shift would be more notably in northern China as future temperature increased.
文摘The production of elastase by Bacillus sp. EL31410 at various temperatures was investigated. In order to study the effect of temperature on elastase fermentation, different cultivation temperatures, ranging from 39 ℃ to 28 ℃, were evaluated in shake flask. The result indicated that 37 ℃ was best for cell growth at earlier stage; while maximum elastase activity was obtained when the cells were cultivated at 30 ℃. This result was verified by batch fermentation in 5-L bio-reactor under 37 ℃ and 30 ℃ temperature, respectively. The specific cell growth rate at 37 ℃ was higher than that at 30 ℃ during earlier stage of cultivation. The maximum value [5.5 U/(h-g DCW)] of elastase formation rate occurred at 24 h at 30 ℃ compared to 4.6 U/(h-g DCW) at 30 h at 37 ℃. Based on these results, two-stage temperature shift strategy and oscillatory temperature cultivation mode were evaluated in the next study. When compared to single temperature of 37 ℃ or 30 ℃, both two-stage temperature shift strategy and oscillatory temperature strategy improved biomass but did not yield the same result as expected for elastase production. The maximum biomass (both 8.6 g/L) was achieved at 30 h at 37 ℃, but at 42 h using two-stage temperature cultivation strategy. The highest elastase production (652 U/ml) was observed at 30 ℃ in batch process. It was concluded that cultivation at constant temperature of 30 ℃ was appropriate for elastase production by Bacillus sp. EL31410.