The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and...The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and X-ray diffraction . The results showed that the layer of flux (the minimum thickness was 15 μm on the steel plate surface) could protect the steel plate surface from oxidizing effectively at high temperature in solid to liquid bonding. The melt temperatUre of the flux should be lower than 580 ℃ so that it could be melted and removed completely. No. 1 flux (patent product made by the author) made up of halogeindes could also force liquid aluminum to infiltrate into steel plate surface and thus the interfacial shear strength of the bonding plate was rather large.展开更多
文摘The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and X-ray diffraction . The results showed that the layer of flux (the minimum thickness was 15 μm on the steel plate surface) could protect the steel plate surface from oxidizing effectively at high temperature in solid to liquid bonding. The melt temperatUre of the flux should be lower than 580 ℃ so that it could be melted and removed completely. No. 1 flux (patent product made by the author) made up of halogeindes could also force liquid aluminum to infiltrate into steel plate surface and thus the interfacial shear strength of the bonding plate was rather large.
文摘针对电子束选区熔化成形技术中存在的真空辐射环境及表面不允许破坏的情况,提出热电偶测温和数值模拟相结合测温的方法对经电子束预热处理的底板表面温度进行测量.热电偶测温为数值模拟中电子束热效率、电子束作用深度和底板厚度三个因素的水平进行优化,从而得到合理的数值模拟程序,并利用该数值模拟程序和优化的因素水平对底板表面温度进行合理的预报.结果表明,采用数值模拟及热电偶底面测温相结合可以得到精确度较高的表面温度,底板表面温度达到钛合金粉末烧结温度800℃时的电子束预热时间为1 600 s.