本文利用NCEP/NCAR 2.5°×2.5°资料、常规观测资料以及自动站资料,对2016年7月31日至8月1日的降水天气过程进行分析。结果表明,本次降水过程主要是副高西伸北抬并配合北部高空槽东移,进而提供良好的上升运动及水汽条件,配...本文利用NCEP/NCAR 2.5°×2.5°资料、常规观测资料以及自动站资料,对2016年7月31日至8月1日的降水天气过程进行分析。结果表明,本次降水过程主要是副高西伸北抬并配合北部高空槽东移,进而提供良好的上升运动及水汽条件,配合850 h Pa温带气旋,地面倒槽,进而形成稳定性降水。展开更多
This study identifies the atmospheric circulation features that are favorable for the occurrence of low-level turbulence at Hong Kong International Airport [below 1600 feet (around 500 m)]. By using LIDAR data at th...This study identifies the atmospheric circulation features that are favorable for the occurrence of low-level turbulence at Hong Kong International Airport [below 1600 feet (around 500 m)]. By using LIDAR data at the airport, turbulence and nonturbulence cases are selected. It is found that the occurrence of turbulence is significantly related to the strength of the southerly wind at 850 hPa over the South China coast. On the other hand, the east-west wihd at this height demonstrates a weak relation to the occurrence. This suggests that turbulence is generated by flow passing Lantau Island from the south. The southerly wind also transports moisture from the South China Sea to Hong Kong, reducing local stability. This is favorable for the development of strong turbulence. It is also noted that the strong southerly wind during the occurrence of low-level turbulence is contributed by an anomalous zonal gradient of geopotential in the lower troposphere over the South China Sea. This gradient is caused by the combination of variations at different timescales. These are the passage of synoptic extratropical cyclones and anticyclones and the intraseasonal variation in the western North Pacific subtropical high. The seasonal variation in geopotential east of the Tibetan Plateau leads to a seasonal change in meridional wind, by which the frequency of low-level turbulence is maximized in spring and minimized in autumn.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.41675062 and 41375096)the RGC General Research Fund (Grant No.11335316)
文摘This study identifies the atmospheric circulation features that are favorable for the occurrence of low-level turbulence at Hong Kong International Airport [below 1600 feet (around 500 m)]. By using LIDAR data at the airport, turbulence and nonturbulence cases are selected. It is found that the occurrence of turbulence is significantly related to the strength of the southerly wind at 850 hPa over the South China coast. On the other hand, the east-west wihd at this height demonstrates a weak relation to the occurrence. This suggests that turbulence is generated by flow passing Lantau Island from the south. The southerly wind also transports moisture from the South China Sea to Hong Kong, reducing local stability. This is favorable for the development of strong turbulence. It is also noted that the strong southerly wind during the occurrence of low-level turbulence is contributed by an anomalous zonal gradient of geopotential in the lower troposphere over the South China Sea. This gradient is caused by the combination of variations at different timescales. These are the passage of synoptic extratropical cyclones and anticyclones and the intraseasonal variation in the western North Pacific subtropical high. The seasonal variation in geopotential east of the Tibetan Plateau leads to a seasonal change in meridional wind, by which the frequency of low-level turbulence is maximized in spring and minimized in autumn.