We present a continuous-wave squeezed vacuum generation system at a telecommunication wavelength of 1.3 μm. By employing a home-made single-frequency Nd:YVO4 laser with dual wavelength outputs as the pump source, vi...We present a continuous-wave squeezed vacuum generation system at a telecommunication wavelength of 1.3 μm. By employing a home-made single-frequency Nd:YVO4 laser with dual wavelength outputs as the pump source, via an optical parameter oscillator based on periodically poled KTR a squeezed vacuum of 6.1 dB+0.1 dB below the shot noise limit at 1342 nm is experimentally measured. This system could be utilized for demonstrating practical quantum information networks.展开更多
We report on the generation of a squeezing vacuum at 1.55 μm using an optical parametric amplifier based on periodically poled LiNbO 3.Using three specifically designed narrow linewidth mode cleaners as the spatial m...We report on the generation of a squeezing vacuum at 1.55 μm using an optical parametric amplifier based on periodically poled LiNbO 3.Using three specifically designed narrow linewidth mode cleaners as the spatial mode and noise filter of the laser at 1.55 μm and 775 nm,the squeezed vacuum of up to 3.0 dB below the shot noise level at 1.55 μm is experimentally obtained.This system is compatible with standard telecommunication optical fibers,and will be useful for continuous variable long-distance quantum communication and distributed quantum computing.展开更多
音频段压缩态光场是进行连续变量量子精密测量重要的量子资源.本文利用自制的低噪声连续单频671 nm/1.34μm双波长激光器作为抽运源,抽运基于周期极化磷酸氧钛钾晶体的简并光学参量振荡器,进行了光通信波段1.34μm连续变量音频段真空压...音频段压缩态光场是进行连续变量量子精密测量重要的量子资源.本文利用自制的低噪声连续单频671 nm/1.34μm双波长激光器作为抽运源,抽运基于周期极化磷酸氧钛钾晶体的简并光学参量振荡器,进行了光通信波段1.34μm连续变量音频段真空压缩态光场的实验制备.当简并光学参量振荡器运转于阈值以下参量反放大状态时,抽运光场功率为95 mW,本地振荡光功率为60μW时,在分析频率8—100 k Hz范围内研制出1.34μm真空压缩态光场.在分析频率36 k Hz处,压缩态光场的最大压缩度达5.0 d B;在音频频率8k Hz处,压缩态光场的压缩度达3.0 d B.音频段1.34μm压缩态光场可用于实现基于光纤的量子精密测量.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2010CB923101)the National Natural Science Foundation of China (Grant Nos. 61008001 and 61227015)the Natural Science Foundation of Shanxi Province, China (Grant No. 2011021003-2)
文摘We present a continuous-wave squeezed vacuum generation system at a telecommunication wavelength of 1.3 μm. By employing a home-made single-frequency Nd:YVO4 laser with dual wavelength outputs as the pump source, via an optical parameter oscillator based on periodically poled KTR a squeezed vacuum of 6.1 dB+0.1 dB below the shot noise limit at 1342 nm is experimentally measured. This system could be utilized for demonstrating practical quantum information networks.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60878003)the Science Foundation for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064)the National Basic Research Program of China (Grant No. 2010CB923101)
文摘We report on the generation of a squeezing vacuum at 1.55 μm using an optical parametric amplifier based on periodically poled LiNbO 3.Using three specifically designed narrow linewidth mode cleaners as the spatial mode and noise filter of the laser at 1.55 μm and 775 nm,the squeezed vacuum of up to 3.0 dB below the shot noise level at 1.55 μm is experimentally obtained.This system is compatible with standard telecommunication optical fibers,and will be useful for continuous variable long-distance quantum communication and distributed quantum computing.
文摘音频段压缩态光场是进行连续变量量子精密测量重要的量子资源.本文利用自制的低噪声连续单频671 nm/1.34μm双波长激光器作为抽运源,抽运基于周期极化磷酸氧钛钾晶体的简并光学参量振荡器,进行了光通信波段1.34μm连续变量音频段真空压缩态光场的实验制备.当简并光学参量振荡器运转于阈值以下参量反放大状态时,抽运光场功率为95 mW,本地振荡光功率为60μW时,在分析频率8—100 k Hz范围内研制出1.34μm真空压缩态光场.在分析频率36 k Hz处,压缩态光场的最大压缩度达5.0 d B;在音频频率8k Hz处,压缩态光场的压缩度达3.0 d B.音频段1.34μm压缩态光场可用于实现基于光纤的量子精密测量.