期刊文献+
共找到227篇文章
< 1 2 12 >
每页显示 20 50 100
Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer 被引量:14
1
作者 Wei Chen Xi Chen +2 位作者 Jianbing Peng Mahdi Panahi Saro Lee 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期93-107,共15页
As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been ... As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and ef 展开更多
关键词 Landslide susceptibility Step-wise weight assessment ratio analysis Adaptive neuro-fuzzy fuzzy inference system teaching-learning-based optimization Satin bowerbird optimizer
下载PDF
Effective Hybrid Teaching-learning-based Optimization Algorithm for Balancing Two-sided Assembly Lines with Multiple Constraints 被引量:8
2
作者 TANG Qiuhua LI Zixiang +2 位作者 ZHANG Liping FLOUDAS C A CAO Xiaojun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期1067-1079,共13页
Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In ... Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS. 展开更多
关键词 two-sided assembly line balancing teaching-learning-based optimization algorithm variable neighborhood search positional constraints zoning constraints synchronism constraints
下载PDF
需求导向、以教促学的培训模式的应用价值 被引量:4
3
作者 岳阳 刘作良 +1 位作者 龙燕琼 左钰 《中国继续医学教育》 2022年第4期133-137,共5页
目的本研究探索了一种需求导向、以教促学的心肺复苏培训新模式,通过比较其与传统的心肺复苏培训模式在近、远期培训效果上的差异以确定其应用价值。方法研究对象随机分为两组,对照组采用教师授课与心肺复苏模型实践练习相结合的传统教... 目的本研究探索了一种需求导向、以教促学的心肺复苏培训新模式,通过比较其与传统的心肺复苏培训模式在近、远期培训效果上的差异以确定其应用价值。方法研究对象随机分为两组,对照组采用教师授课与心肺复苏模型实践练习相结合的传统教学模式,试验组的授课教师根据问卷结果可在覆盖教学大纲的基础上对授课内容的侧重点进行调整,随后在心肺复苏模型实践练习。两组受训者均在培训后即时、培训后3个月以及6个月时评价CPR操作的有关知识与技能。结果在培训后的即时评价中,两组学生在实施心肺复苏的意愿、心肺复苏的基本理论知识成绩上均无统计学意义(P>0.05),但在对心肺复苏模型的心肺复苏操作上试验组的总分显著高于对照组,差异有统计学意义(P <0.05)。在受训后3个月以及6个月后的评价中,两组学生在实施心肺复苏的意愿无显著差异;试验组在基本理论知识的掌握上优于对照组;在心肺复苏模型上的心肺复苏操作评分两组均有所下降,但试验组优于对照组,差异具有统计学意义(P <0.05)。结论需求导向、以教促学的心肺复苏培训模式可较传统教学模式促进医学生在较长时期内对心肺复苏基础理论知识以及实践技能的掌握。 展开更多
关键词 心肺复苏 需求导向 以教促学 教学模式 心脏骤停 培训 队列研究
下载PDF
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
4
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE CSCD 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 Adaptive Grasshopper Optimization Algorithm(AGOA) Cluster Head(CH) network lifetime teaching-learning-based Optimization Algorithm(TLOA) Wireless Sensor Networks(WSNs)
下载PDF
An Elite-Class Teaching-Learning-Based Optimization for Reentrant Hybrid Flow Shop Scheduling with Bottleneck Stage
5
作者 Deming Lei Surui Duan +1 位作者 Mingbo Li Jing Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期47-63,共17页
Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid ... Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP. 展开更多
关键词 Hybrid flow shop scheduling REENTRANT bottleneck stage teaching-learning-based optimization
下载PDF
求解约束优化问题的融合粒子群的教与学算法 被引量:3
6
作者 赵乃刚 李勇 王振荣 《计算机应用研究》 CSCD 北大核心 2018年第5期1307-1309,共3页
针对约束优化问题,提出了一种融合粒子群的教与学算法。算法采用了一种自适应的教学因子,使得算法的搜索性能可以自适应地调整。引入了自我学习和相互学习的学习模式,使得信息交流更加多样化,增强了算法的全局搜索能力;最后根据适应度... 针对约束优化问题,提出了一种融合粒子群的教与学算法。算法采用了一种自适应的教学因子,使得算法的搜索性能可以自适应地调整。引入了自我学习和相互学习的学习模式,使得信息交流更加多样化,增强了算法的全局搜索能力;最后根据适应度值将整个种群分为两个子种群,对适应度值差的子种群采用粒子群算法以提升收敛性能,对适应度值优的子种群采用教与学优化算法以增强种群的多样性,通过两种算法的优势互补,提升了算法的整体优化性能。通过在22个标准测试函数的实验和与其他三种算法的比较表明,融合粒子群的教与学算法求解精度高,收敛速度快,它是一种可行、高效的优化算法。 展开更多
关键词 教与学算法 粒子群算法 约束优化问题 自适应 约束处理
下载PDF
A Bi-population Cooperative Optimization Algorithm Assisted by an Autoencoder for Medium-scale Expensive Problems 被引量:2
7
作者 Meiji Cui Li Li +3 位作者 MengChu Zhou Jiankai Li Abdullah Abusorrah Khaled Sedraoui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第11期1952-1966,共15页
This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informat... This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informative lowdimensional space by using an autoencoder as a dimension reduction tool.The search operation conducted in this low space facilitates the population with fast convergence towards the optima.To strike the balance between exploration and exploitation during optimization,two phases of a tailored teaching-learning-based optimization(TTLBO)are adopted to coevolve solutions in a distributed fashion,wherein one is assisted by an autoencoder and the other undergoes a regular evolutionary process.Also,a dynamic size adjustment scheme according to problem dimension and evolutionary progress is proposed to promote information exchange between these two phases and accelerate evolutionary convergence speed.The proposed algorithm is validated by testing benchmark functions with dimensions varying from 50 to 200.As indicated in our experiments,TTLBO is suitable for dealing with medium-scale problems and thus incorporated into the AEO framework as a base optimizer.Compared with the state-of-the-art algorithms for MEPs,AEO shows extraordinarily high efficiency for these challenging problems,t hus opening new directions for various evolutionary algorithms under AEO to tackle MEPs and greatly advancing the field of medium-scale computationally expensive optimization. 展开更多
关键词 Autoencoder dimension reduction evolutionary algorithm medium-scale expensive problems teaching-learning-based optimization
下载PDF
基于TLBO算法的不确定性条件下复杂产品协同设计的可靠性拓扑优化 被引量:1
8
作者 Zhaoxi Hong Xiangyu Jiang +2 位作者 冯毅雄 Qinyu Tian 谭建荣 《Engineering》 SCIE EI CAS CSCD 2023年第3期71-81,共11页
复杂产品的拓扑优化设计可以显著节省材料和节能,有效地降低惯性力和机械振动。本研究以一种大吨位液压机作为典型的复杂产品,用于阐述该优化方法。本文提出了一种基于可靠性与优化解耦模型和基于教学学习的优化(TLBO)算法的可靠性拓扑... 复杂产品的拓扑优化设计可以显著节省材料和节能,有效地降低惯性力和机械振动。本研究以一种大吨位液压机作为典型的复杂产品,用于阐述该优化方法。本文提出了一种基于可靠性与优化解耦模型和基于教学学习的优化(TLBO)算法的可靠性拓扑优化方法。将由板结构形成的支撑物作为拓扑优化对象,重量轻、稳定性好。将不确定性下的可靠性优化和结构拓扑优化协同处理。首先,利用有限差分法将优化问题中的不确定性参数修正为确定性参数。然后,将不确定性可靠性分析和拓扑优化的复杂嵌套解耦。最后,利用TLBO算法求解解耦模型,该算法参数少,求解速度快。TLBO算法采用了自适应教学因子,在初始阶段实现了更快的收敛速度,并在后期进行了更精细的搜索。本文给出了一个液压机基板结构的数值实例,说明了该方法的有效性。 展开更多
关键词 Plates structure Reliability Collaborative topology optimization teaching-learning-based optimization algorithm UNCERTAINTY Collaborative design for product life cycle
下载PDF
考虑阀点效应的电力系统经济分配算法 被引量:2
9
作者 何湘竹 黄继达 《计算机工程与应用》 CSCD 北大核心 2015年第20期227-233,共7页
经济分配(ED)对于电力系统的节能至关重要,适当的分配方法可以为电厂节约巨额生产成本,然而阀点效应使得实际ED问题呈现出不光滑和非凸的特性,导致一些经典的优化算法和启发式算法无法在合理时间内发现最优解。提出一种新的改进教与学... 经济分配(ED)对于电力系统的节能至关重要,适当的分配方法可以为电厂节约巨额生产成本,然而阀点效应使得实际ED问题呈现出不光滑和非凸的特性,导致一些经典的优化算法和启发式算法无法在合理时间内发现最优解。提出一种新的改进教与学优化算法来求解计及阀点效应的经济分配问题,并采用一种新的修正策略取代罚函数法来处理约束条件。为了验证新算法的有效性和鲁棒性,选取典型的benchmark函数和ED实例进行仿真计算,结果表明与其他代表性算法相比,该方法求解精度高、收敛速度快,为计及阀点效应的经济分配问题求解提供了一条新途径。 展开更多
关键词 电力系统 经济分配 阀点效应 改进的教与学优化算法 MODIFIED teaching-learning-based Optimization algo-rithm(CTLBO)
下载PDF
An Efficient Hybrid TLBO-PSO Approach for Congestion Management Employing Real Power Generation Rescheduling
10
作者 Muneeb Ul Bashir Ward Ul Hijaz Paul +2 位作者 Mubassir Ahmad Danish Ali Md. Safdar Ali 《Smart Grid and Renewable Energy》 2021年第8期113-135,共23页
<span style="font-family:Verdana;">In the present deregulated electricity market, power system congestion is the main complication that an independent system operator (ISO) faces on a regular basis. Tr... <span style="font-family:Verdana;">In the present deregulated electricity market, power system congestion is the main complication that an independent system operator (ISO) faces on a regular basis. Transmission line congestion trigger serious problems for smooth functioning in restructured power system causing an increase in the cost of transmission hence affecting market efficiency. Thus, it is of utmost importance for the investigation of various techniques in order to relieve congestion in the transmission network. Generation rescheduling is one of the most efficacious techniques to do away with the problem of congestion. For optimiz</span><span style="font-family:Verdana;">ing the congestion cost, this work suggests a hybrid optimization based on</span><span style="font-family:Verdana;"> two effective algorithms viz Teaching learning-based optimization (TLBO) algorithm and Particle swarm optimization (PSO) algorithm. For binding the constraints, the traditional penalty function technique is incorporated. Modified IEEE 30-bus test system and modified IEEE 57-bus test system are used to inspect the usefulness of the suggested methodology.</span> 展开更多
关键词 Congestion Management DEREGULATION Optimal Power Flow teaching-learning-based Optimization (TLBO) Power System Modeling
下载PDF
Improved Teaching-Learning-Based Optimization Algorithm for Modeling NOX Emissions of a Boiler
11
作者 Xia Li Peifeng Niu +1 位作者 Jianping Liu Qing Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第10期29-57,共29页
An improved teaching-learning-based optimization(I-TLBO)algorithm is proposed to adjust the parameters of extreme learning machine with parallel layer perception(PELM),and a well-generalized I-TLBO-PELM model is obtai... An improved teaching-learning-based optimization(I-TLBO)algorithm is proposed to adjust the parameters of extreme learning machine with parallel layer perception(PELM),and a well-generalized I-TLBO-PELM model is obtained to build the model of NOX emissions of a boiler.In the I-TLBO algorithm,there are four major highlights.Firstly,a quantum initialized population by using the qubits on Bloch sphere replaces a randomly initialized population.Secondly,two kinds of angles in Bloch sphere are generated by using cube chaos mapping.Thirdly,an adaptive control parameter is added into the teacher phase to speed up the convergent speed.And then,according to actual teaching-learning phenomenon of a classroom,students learn some knowledge not only by their teacher and classmates,but also by themselves.Therefore,a self-study strategy by using Gauss mutation is introduced after the learning phase to improve the exploration ability.Finally,we test the performance of the I-TLBO-PELM model.The experiment results show that the proposed model has better regression precision and generalization ability than eight other models. 展开更多
关键词 BLOCH sphere QUBITS SELF-learning IMPROVED teaching-learning-based optimization(I-TLBO)algorithm
下载PDF
基于反馈的精英教学优化算法 被引量:51
12
作者 于坤杰 王昕 王振雷 《自动化学报》 EI CSCD 北大核心 2014年第9期1976-1983,共8页
精英教学优化算法(Elitist teaching-learning-based optimization,ETLBO)是一种基于实际班级教学过程的新型优化算法.本文针对ETLBO算法寻优精度低、稳定性差的问题,提出了反馈精英教学优化算法(Feedback ETLBO).在ETLBO算法的基础上,... 精英教学优化算法(Elitist teaching-learning-based optimization,ETLBO)是一种基于实际班级教学过程的新型优化算法.本文针对ETLBO算法寻优精度低、稳定性差的问题,提出了反馈精英教学优化算法(Feedback ETLBO).在ETLBO算法的基础上,通过在学生阶段之后加入反馈阶段,增加了学生的学习方式,保持学生的多样性特性,提高算法的全局搜索能力.同时,反馈阶段是选举成绩较差的学生与教师交流,使成绩较差的学生快速向教师靠拢,使算法进行局部精细搜索,提高算法的寻优精度.对6个无约束及5个约束标准函数的测试结果表明,FETLBO算法与其他算法相比在寻优精度和稳定性上更具优势.最后将FETLBO算法应用于拉压弹簧优化设计问题及0-1背包问题,取得了满意结果. 展开更多
关键词 进化算法 精英教学优化算法 反馈 函数优化
下载PDF
“教与学”优化算法研究综述 被引量:39
13
作者 拓守恒 雍龙泉 邓方安 《计算机应用研究》 CSCD 北大核心 2013年第7期1933-1938,共6页
简要分析了群智能优化算法的研究现状,重点对"教与学"优化算法作了详细的描述,并分析了"教与学"算法的性能及其优缺点;随后介绍了几种改进的"教与学"优化算法,对"教与学"优化算法的应用研究情... 简要分析了群智能优化算法的研究现状,重点对"教与学"优化算法作了详细的描述,并分析了"教与学"算法的性能及其优缺点;随后介绍了几种改进的"教与学"优化算法,对"教与学"优化算法的应用研究情况进行了论述。最后,说明了目前"教与学"优化算法中存在的问题,并指出"教与学"优化算法未来的研究方向。 展开更多
关键词 “教与学”优化算法 “教”阶段 “学”阶段
下载PDF
基于新型教学优化算法的低碳柔性作业车间调度 被引量:30
14
作者 雷德明 《控制与决策》 EI CSCD 北大核心 2017年第9期1621-1627,共7页
针对低碳柔性作业车间调度问题,提出一种基于新型优化机理的教学优化(TLBO)算法,以同时最小化总碳排放和平均延迟时间.利用3个串对问题的3个子问题单独编码,其主要步骤为教师的自学阶段和教学阶段,并运用多邻域搜索和全局搜索分别模拟... 针对低碳柔性作业车间调度问题,提出一种基于新型优化机理的教学优化(TLBO)算法,以同时最小化总碳排放和平均延迟时间.利用3个串对问题的3个子问题单独编码,其主要步骤为教师的自学阶段和教学阶段,并运用多邻域搜索和全局搜索分别模拟教师的自学和教学活动.计算实验和结果分析表明,TLBO对于所研究的问题具有较强的搜索能力. 展开更多
关键词 柔性作业车间调度 教学优化算法 总碳排放 低碳调度
原文传递
基于混沌映射与差分进化自适应教与学优化算法的太赫兹图像增强模型 被引量:26
15
作者 孙凤山 范孟豹 +2 位作者 曹丙花 叶波 刘林 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第4期92-101,共10页
为消除功率起伏效应引起的太赫兹(THz)图像局部伪影,构建了基于同态滤波的THz图像增强模型。然而,模型各参数取值差异大且耦合性强,给其参数确定带来了困难。为此,本文提出了混沌映射与差分进化自适应教与学优化算法以求解增强模型最优... 为消除功率起伏效应引起的太赫兹(THz)图像局部伪影,构建了基于同态滤波的THz图像增强模型。然而,模型各参数取值差异大且耦合性强,给其参数确定带来了困难。为此,本文提出了混沌映射与差分进化自适应教与学优化算法以求解增强模型最优参数。首先,改进了标准Logistic混沌映射,提高了种群多样性。其次,引入适应度更新率,构造了自适应惯性权重调节函数,平衡了全局与局部寻优能力,利于种群向最优解逼近。然后,基于差分变异思想构建了教改阶段,避免算法陷入局部最优。最后,制备了缺陷样品,开展了太赫兹无损检测实验,结果表明:较其他3种方法,本文方法消除伪影效果最佳,THz图像二维熵分别提升了16%、5%、10%,平均梯度分别提升了39%、8%、19%。 展开更多
关键词 太赫兹无损检测 图像增强 局部伪影 混沌映射 教与学优化算法
下载PDF
基于改进教与学优化算法的配电网重构 被引量:19
16
作者 邱骁奇 胡志坚 《电力系统保护与控制》 EI CSCD 北大核心 2016年第12期42-49,共8页
正常运行工况下的配电网重构能降低配电网损耗。近年来新兴的教与学算法具有自有参数少、简单易懂、收敛迅速等优点,十分适合多目标、多约束的配电网重构优化问题求解。以网损最小和开关操作次数为目标,并考虑运行经济成本,将教与学算... 正常运行工况下的配电网重构能降低配电网损耗。近年来新兴的教与学算法具有自有参数少、简单易懂、收敛迅速等优点,十分适合多目标、多约束的配电网重构优化问题求解。以网损最小和开关操作次数为目标,并考虑运行经济成本,将教与学算法引入到配电网优化重构中,对基本教与学算法中的教学因子进行了自适应改进,给出了算法的编码策略、迭代过程中"学生"信息的修改原则。PG&E 69节点系统以及一个实际城区配电网的优化重构仿真结果表明所提改进算法的有效性。 展开更多
关键词 配电网重构 网络化简 改进教与学算法 教学因子
下载PDF
求解约束优化问题的协同进化教与学优化算法 被引量:18
17
作者 刘三阳 靳安钊 《自动化学报》 EI CSCD 北大核心 2018年第9期1690-1697,共8页
对约束优化问题,为了避免罚因子和等式约束转化为不等式约束时引入的约束容忍度参数所带来的不便,本文在基本教与学优化(Teaching-learning-based optimization,TLBO)算法中加入了自我学习过程并提出了一种求解约束优化问题的协同进化... 对约束优化问题,为了避免罚因子和等式约束转化为不等式约束时引入的约束容忍度参数所带来的不便,本文在基本教与学优化(Teaching-learning-based optimization,TLBO)算法中加入了自我学习过程并提出了一种求解约束优化问题的协同进化教与学优化算法,使得罚因子和约束容忍度随种群的进化动态调整.对7个常见测试函数的数值实验验证了算法求解带有等式和不等式约束优化问题的有效性. 展开更多
关键词 教与学优化算法 协同进化 罚因子 约束容忍度 种群多样性
下载PDF
数控车床切削参数的能量效率优化 被引量:18
18
作者 周志恒 张超勇 +2 位作者 谢阳 黄拯滔 邵新宇 《计算机集成制造系统》 EI CSCD 北大核心 2015年第9期2410-2418,共9页
为选择合理的数控车床切削用量,建立数控车床切削参数能量消耗和加工效率数学模型。在切削参数能量消耗估算模型中,通过实验拟合与正交实验分别获取数控车床的空载功率和切削功率函数,进一步给出数控车床切削阶段能量消耗函数。在车床... 为选择合理的数控车床切削用量,建立数控车床切削参数能量消耗和加工效率数学模型。在切削参数能量消耗估算模型中,通过实验拟合与正交实验分别获取数控车床的空载功率和切削功率函数,进一步给出数控车床切削阶段能量消耗函数。在车床加工条件的各种约束下,设计了一种基于多目标教与学优化算法来求解切削参数能量效率优化模型,以切削阶段加工能量最小和加工效率最高为目标,获得切削参数优化的Pareto前沿解,并采用层次分析法建立了切削参数的决策模型,较客观地选取了更优车削参数组合。通过数控车床实例优化验证了所提策略的可行性和有效性。 展开更多
关键词 车削 能耗 切削参数 教与学优化算法 数控车床
下载PDF
一种多目标资源受限项目调度问题的教学算法 被引量:16
19
作者 王凌 郑环宇 《控制与决策》 EI CSCD 北大核心 2015年第10期1868-1872,共5页
针对多目标资源受限项目调度的特性,基于结合活动列表和资源列表的编码设计了合理的交叉操作,提出一种多目标教学算法.为了在个体间有效交互信息,在教师阶段非支配个体作为教师与学生执行交叉,而在学生阶段学生间执行交叉,同时在每个阶... 针对多目标资源受限项目调度的特性,基于结合活动列表和资源列表的编码设计了合理的交叉操作,提出一种多目标教学算法.为了在个体间有效交互信息,在教师阶段非支配个体作为教师与学生执行交叉,而在学生阶段学生间执行交叉,同时在每个阶段通过前向-反向改进增强局部搜索能力,并用Pareto档案集存储和更新非支配个体.基于标准测试集的数值仿真及与现有最好算法的比较,验证了所提出算法的有效性. 展开更多
关键词 资源受限项目调度 多目标优化 教学算法 前向-反向改进
原文传递
基于维修时间窗的柔性作业车间调度优化研究 被引量:16
20
作者 朱传军 宋文家 +2 位作者 张超勇 曹静 朱孟周 《中国机械工程》 EI CAS CSCD 北大核心 2016年第10期1337-1343,共7页
针对柔性作业车间调度和预防性维护的单目标集成优化问题,以最大完工时间为优化指标,建立了基于维修时间窗的集成优化模型,设计了混合"教与学"优化(HTLBO)算法求解该模型。提出一种"基于工序加工时间最短"的机器序... 针对柔性作业车间调度和预防性维护的单目标集成优化问题,以最大完工时间为优化指标,建立了基于维修时间窗的集成优化模型,设计了混合"教与学"优化(HTLBO)算法求解该模型。提出一种"基于工序加工时间最短"的机器序列初始化策略,对部分初始种群进行初始优化,以提高部分初始解的质量,使得算法能够以较短的时间收敛。对文献中柔性作业车间调度的基准问题进行求解并比较其计算结果,初步证明该混合算法的可行性;针对集成维修时间窗的柔性作业车间调度优化模型,借鉴文献中的数据生成实例进行求解,并与其他算法进行比较,证明该混合算法的有效性。 展开更多
关键词 维修时间窗 柔性作业车间调度问题 “教与学”优化 模拟退火
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部