针对低信噪比(SNR<3 d B)场景下弱小目标跟踪问题,提出了改进的粒子滤波跟踪方法。本文首先通过空间位置加权的方式来获取灰度特征,并将邻域运动模型和灰度概率图相结合来获取弱小目标运动特征,然后构建灰度与运动特性的联合观测模...针对低信噪比(SNR<3 d B)场景下弱小目标跟踪问题,提出了改进的粒子滤波跟踪方法。本文首先通过空间位置加权的方式来获取灰度特征,并将邻域运动模型和灰度概率图相结合来获取弱小目标运动特征,然后构建灰度与运动特性的联合观测模型来计算粒子权值。同时在跟踪过程中考虑到目标的灰度分布特性并不稳定,加入了自适应更新参考目标灰度模板的策略,最后采用几组真实场景来验证本文算法的跟踪效果。实验证明:和传统算法相比,本文算法增强了低信噪比(SNR<3 d B)场景下红外弱小目标跟踪能力。展开更多
目的针对现实场景中跟踪目标背景复杂、光照变化、快速运动、旋转等问题,提出自适应多特征融合的相关滤波跟踪算法。方法提取目标的HOG(histogram of oriented gradients)特征和利用卷积神经网络提取高、低层卷积特征,借助一种自适应阈...目的针对现实场景中跟踪目标背景复杂、光照变化、快速运动、旋转等问题,提出自适应多特征融合的相关滤波跟踪算法。方法提取目标的HOG(histogram of oriented gradients)特征和利用卷积神经网络提取高、低层卷积特征,借助一种自适应阈值分割方法评估每种特征的有效性,得到特征融合的权重比。根据权重系数融合每种特征的响应图,并据此得到目标的新估计位置,利用尺度相关滤波器计算目标尺度,得到目标尺度完成跟踪。结果在OTB(object tracking benchmark)-2013公开数据集上进行实验,在对多特征融合进行分析的基础上,测试了本文算法在11种不同属性下的跟踪性能,并与当前流行的7种算法进行对比分析。结果表明,本文算法的成功率和精确度均排名第1,相较于基准算法DSST (discriminative scale space tracking)跟踪精确度提高了4%,成功率提高了6%。在复杂场景下比其他主流算法更具有鲁棒性。结论本文算法以DSST相关滤波跟踪器为基准算法,借助自适应阈值分割方法评估每种特征的有效性,自适应融合两层卷积特征和HOG特征,使得判别性越强的单一特征融合权重越大,较好表达了目标的外观模型,在背景复杂、目标消失、光照变化、快速运动、旋转等场景下表现出较强的跟踪准确性。展开更多
针对目标发生形变、遮挡以及尺度变化导致跟踪失败的情况,本文提出了一种改进的多特征融合的目标跟踪算法。首先,通过计算方向梯度直方图(Histogram of Oriented Gridients,HOG)和颜色命名(Color Names,CN)特征响应相邻两帧峰值旁瓣比(P...针对目标发生形变、遮挡以及尺度变化导致跟踪失败的情况,本文提出了一种改进的多特征融合的目标跟踪算法。首先,通过计算方向梯度直方图(Histogram of Oriented Gridients,HOG)和颜色命名(Color Names,CN)特征响应相邻两帧峰值旁瓣比(Peak-to-Sidelobe Ratio,PSR)的差值得到这两种特征的融合权重,用得到的权重对HOG和CN特征响应进行自适应融合,将第一次融合后的响应与颜色直方图特征获得的响应以固定权重进行二次融合,并根据融合结果确定目标中心位置。其次,结合最终目标响应值的PSR与其均值的差值变化,对位置相关滤波器和尺度相关滤波器的学习速率进行动态调整。最后,在OTB50标准数据集上进行实验验证,并和其他跟踪算法进行对比。实验结果表明本文算法在多项性能指标上均优于其他算法,其中精度为81.9%,成功率为61.1%,能有效适应形变、遮挡以及尺度变化场景下的目标跟踪。展开更多
文摘针对低信噪比(SNR<3 d B)场景下弱小目标跟踪问题,提出了改进的粒子滤波跟踪方法。本文首先通过空间位置加权的方式来获取灰度特征,并将邻域运动模型和灰度概率图相结合来获取弱小目标运动特征,然后构建灰度与运动特性的联合观测模型来计算粒子权值。同时在跟踪过程中考虑到目标的灰度分布特性并不稳定,加入了自适应更新参考目标灰度模板的策略,最后采用几组真实场景来验证本文算法的跟踪效果。实验证明:和传统算法相比,本文算法增强了低信噪比(SNR<3 d B)场景下红外弱小目标跟踪能力。
文摘目的针对现实场景中跟踪目标背景复杂、光照变化、快速运动、旋转等问题,提出自适应多特征融合的相关滤波跟踪算法。方法提取目标的HOG(histogram of oriented gradients)特征和利用卷积神经网络提取高、低层卷积特征,借助一种自适应阈值分割方法评估每种特征的有效性,得到特征融合的权重比。根据权重系数融合每种特征的响应图,并据此得到目标的新估计位置,利用尺度相关滤波器计算目标尺度,得到目标尺度完成跟踪。结果在OTB(object tracking benchmark)-2013公开数据集上进行实验,在对多特征融合进行分析的基础上,测试了本文算法在11种不同属性下的跟踪性能,并与当前流行的7种算法进行对比分析。结果表明,本文算法的成功率和精确度均排名第1,相较于基准算法DSST (discriminative scale space tracking)跟踪精确度提高了4%,成功率提高了6%。在复杂场景下比其他主流算法更具有鲁棒性。结论本文算法以DSST相关滤波跟踪器为基准算法,借助自适应阈值分割方法评估每种特征的有效性,自适应融合两层卷积特征和HOG特征,使得判别性越强的单一特征融合权重越大,较好表达了目标的外观模型,在背景复杂、目标消失、光照变化、快速运动、旋转等场景下表现出较强的跟踪准确性。