Underwater mobile sensor networks(UMSNs) with free-floating sensors are more suitable for understanding the immense underwater environment. Target tracking, whose performance depends on sensor localization accuracy, i...Underwater mobile sensor networks(UMSNs) with free-floating sensors are more suitable for understanding the immense underwater environment. Target tracking, whose performance depends on sensor localization accuracy, is one of the broad applications of UMSNs. However, in UMSNs, sensors move with environmental forces,so their positions change continuously, which poses a challenge on the accuracy of sensor localization and target tracking. We propose a high-accuracy localization with mobility prediction(HLMP) algorithm to acquire relatively accurate sensor location estimates. The HLMP algorithm exploits sensor mobility characteristics and the multistep Levinson-Durbin algorithm to predict future positions. Furthermore, we present a simultaneous localization and target tracking(SLAT) algorithm to update sensor locations based on measurements during the process of target tracking. Simulation results demonstrate that the HLMP algorithm can improve localization accuracy significantly with low energy consumption and that the SLAT algorithm can further decrease the sensor localization error. In addition, results prove that a better localization accuracy will synchronously improve the target tracking performance.展开更多
The existence of various geo-location applications and their accuracy requirements enhance the necessities for suitable processing techniques to solve the indoor geo-location problems. Since, Impulse Radio Ultra-Wideb...The existence of various geo-location applications and their accuracy requirements enhance the necessities for suitable processing techniques to solve the indoor geo-location problems. Since, Impulse Radio Ultra-Wideband (IR-UWB) signals have very short duration pulses;they can provide very accurate ranging and geo-location capability in short range indoor radio propagation environments. Our research puts emphasis on indoor geo-location using UWB signaling considering both of non line-of-sight (NLOS) and LOS radio propagation environments. In this paper, we introduce and investigate a noble approach which makes a hybrid combination of Channel Impulse Response (CIR)-based finger-printing (FP) method with polygonal arrangement of reference nodes (or tags) and an iterative-TOA based real-time geo-location method using UWB signaling for wireless ad hoc networks. The proposed hybrid approach assures significant improvement in positioning accuracy compared to TOA only, FP only and conventional iterative-TOA geo-location methods by mitigating NLOS errors effectively in the indoor environment. Besides, this hybrid approach minimizes the calculation complexity of the FP method while maintaining improved geo-location accuracy in the dense multipath propagation environment.展开更多
Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the...Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the two-stage algorithm is to measure the azimuth angle and pitch angle at each single array, which can obtain high precision angle estimation but low precision range estimation. And in the second step, the location of acoustic source is calculated from the angles measured above and geometry position of the two arrays. Then the accuracy of localization estimation is discussed in theory, and the influence factors and localization error are analyzed by simulation. The simulation results validate the performance of the proposed algorithm, and show the precision of localization estimation with dual arrays is superior to single array.展开更多
基金Project supported by the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(No.U1609204)the National Natural Science Foundation of China(Nos.61531015 and 61673345)the Key Research and Development Program of Zhejiang Province,China(No.2018C03030)
文摘Underwater mobile sensor networks(UMSNs) with free-floating sensors are more suitable for understanding the immense underwater environment. Target tracking, whose performance depends on sensor localization accuracy, is one of the broad applications of UMSNs. However, in UMSNs, sensors move with environmental forces,so their positions change continuously, which poses a challenge on the accuracy of sensor localization and target tracking. We propose a high-accuracy localization with mobility prediction(HLMP) algorithm to acquire relatively accurate sensor location estimates. The HLMP algorithm exploits sensor mobility characteristics and the multistep Levinson-Durbin algorithm to predict future positions. Furthermore, we present a simultaneous localization and target tracking(SLAT) algorithm to update sensor locations based on measurements during the process of target tracking. Simulation results demonstrate that the HLMP algorithm can improve localization accuracy significantly with low energy consumption and that the SLAT algorithm can further decrease the sensor localization error. In addition, results prove that a better localization accuracy will synchronously improve the target tracking performance.
文摘The existence of various geo-location applications and their accuracy requirements enhance the necessities for suitable processing techniques to solve the indoor geo-location problems. Since, Impulse Radio Ultra-Wideband (IR-UWB) signals have very short duration pulses;they can provide very accurate ranging and geo-location capability in short range indoor radio propagation environments. Our research puts emphasis on indoor geo-location using UWB signaling considering both of non line-of-sight (NLOS) and LOS radio propagation environments. In this paper, we introduce and investigate a noble approach which makes a hybrid combination of Channel Impulse Response (CIR)-based finger-printing (FP) method with polygonal arrangement of reference nodes (or tags) and an iterative-TOA based real-time geo-location method using UWB signaling for wireless ad hoc networks. The proposed hybrid approach assures significant improvement in positioning accuracy compared to TOA only, FP only and conventional iterative-TOA geo-location methods by mitigating NLOS errors effectively in the indoor environment. Besides, this hybrid approach minimizes the calculation complexity of the FP method while maintaining improved geo-location accuracy in the dense multipath propagation environment.
基金supported by the 10th Five-year Defense Pre-Research Fund of China (No.51405020305BQ0110).
文摘Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the two-stage algorithm is to measure the azimuth angle and pitch angle at each single array, which can obtain high precision angle estimation but low precision range estimation. And in the second step, the location of acoustic source is calculated from the angles measured above and geometry position of the two arrays. Then the accuracy of localization estimation is discussed in theory, and the influence factors and localization error are analyzed by simulation. The simulation results validate the performance of the proposed algorithm, and show the precision of localization estimation with dual arrays is superior to single array.