Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the taskin...Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energy-efficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy.展开更多
An energy-balanced multiple-sensor collaborative scheduling is proposed for maneuvering target tracking in wireless sensor networks (WSNs). According to the position of the maneuvering target, some sensor nodes in WSN...An energy-balanced multiple-sensor collaborative scheduling is proposed for maneuvering target tracking in wireless sensor networks (WSNs). According to the position of the maneuvering target, some sensor nodes in WSNs are awakened to form a sensor cluster for target tracking collaboratively. In the cluster, the cluster head node is selected to implement tracking task with changed sampling interval. The distributed interactive multiple model (IMM) filter is employed to estimate the target state. The estimation accuracy is improved by collaboration and measurement information fusion of the tasking nodes. The balanced distribution model of energy in WSNs is constructed to prolong the lifetime of the whole network. In addition, the communication energy and computation resource are saved by adaptively changed sampling intervals, and the real-time performance is satisfactory. The simulation results show that the estimation accuracy of the proposed scheme is improved compared with the nearest sensor scheduling scheme (NSSS) and adaptive sensor scheduling scheme (ASSS). Under satisfactory estimation accuracy, it has better performance in saving energy and energy balance than the dynamic collaborative scheduling scheme (DCSS).展开更多
基金partly supported by the Agency for Science,Technology and Research(A*Star)SERC(No.0521010037,0521210082)
文摘Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energy-efficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy.
基金supported by the NSFC-Guangdong Joint Foundation Key Project (No. U0735003)the Oversea Cooperation Foundation (No.60828006)+2 种基金the Fundamental Research Funds for the Central Universities (No. 2009ZM0076)the Specialized Research Funds for the Doctoral Program of Higher Education of China (No. 20100172120028)the Scientific Research Funds for the Returned Overseas Chinese Scholars, State Education Ministry
文摘An energy-balanced multiple-sensor collaborative scheduling is proposed for maneuvering target tracking in wireless sensor networks (WSNs). According to the position of the maneuvering target, some sensor nodes in WSNs are awakened to form a sensor cluster for target tracking collaboratively. In the cluster, the cluster head node is selected to implement tracking task with changed sampling interval. The distributed interactive multiple model (IMM) filter is employed to estimate the target state. The estimation accuracy is improved by collaboration and measurement information fusion of the tasking nodes. The balanced distribution model of energy in WSNs is constructed to prolong the lifetime of the whole network. In addition, the communication energy and computation resource are saved by adaptively changed sampling intervals, and the real-time performance is satisfactory. The simulation results show that the estimation accuracy of the proposed scheme is improved compared with the nearest sensor scheduling scheme (NSSS) and adaptive sensor scheduling scheme (ASSS). Under satisfactory estimation accuracy, it has better performance in saving energy and energy balance than the dynamic collaborative scheduling scheme (DCSS).