Genotyping platforms,as critical supports for genomics,genetics,and molecular breeding,have been well implemented at national institutions/universities in developed countries and multinational seed companies that poss...Genotyping platforms,as critical supports for genomics,genetics,and molecular breeding,have been well implemented at national institutions/universities in developed countries and multinational seed companies that possess high-throughput,automatic,large-scale,and shared facilities.In this study,we integrated an improved genotyping by target sequencing(GBTS)system with capture-in-solution(liquid chip)technology to develop a multiple single-nucleotide polymorphism(mSNP)approach in which mSNPs can be captured from a single amplicon.From one 40K maize mSNP panel,we developed three types of markers(40K mSNPs,251K SNPs,and 690K haplotypes),and generated multiple panels with various marker densities(1K–40K mSNPs)by sequencing at different depths.Comparative genetic diversity analysis was performed with genic versus intergenic markers and di-allelic SNPs versus non-typical SNPs.Compared with the one-amplicon-one-SNP system,mSNPs and within-mSNP haplotypes are more powerful for genetic diversity detection,linkage disequilibrium decay analysis,and genome-wide association studies.The technologies,protocols,and application scenarios developed for maize in this study will serve as a model for the development of mSNP arrays and highly efficient GBTS systems in animals,plants,and microorganisms.展开更多
Rapeseed(Brassica napus)is an oil crop grown worldwide,making it a key plant species in molecular breeding research.However,the complexity of its polyploid genome increases sequencing costs and reduces sequencing accu...Rapeseed(Brassica napus)is an oil crop grown worldwide,making it a key plant species in molecular breeding research.However,the complexity of its polyploid genome increases sequencing costs and reduces sequencing accuracy.Target capture coupled with high-throughput sequencing is an efficient approach for detecting genetic variation at genomic regions or loci of interest.In this study,588 resequenced accessions of rapeseed were used to develop a target capture sequencing SNP genotyping platform named BnaPan50T.The platform comprised 54,765,with 54,058 resequenced markers from the pan-genome,and 855 variant trait-associated markers for 12 agronomic traits.The capture quality of BnaPan50T was demonstrated well in 12 typical accessions.Compared with a conventional genotyping array,BnaPan50T has a high SNP density and a high proportion of SNPs in unique physical positions and in annotated functional genes,promising wide application.Target capture sequencing and wholegenome resequencing in 90 doubled-haploid lines yielded 60%specificity,78%uniformity within tenfold coverage range,and 93%genotyping accuracy for the platform.BnaPan50T was used to construct a genetic map for quantitative trait loci(QTL)mapping,identify 21 unique QTL,and predict several candidate genes for yield-related traits in multiple environments.A set of 132 core SNP loci was selected from BnaPan50T to construct DNA fingerprints and germplasm identification resources.This study provides genomics resources to support target capture sequencing,genetic analysis and genomic breeding of rapeseed.展开更多
Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation ene...Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation energy deposition, severe damage to surrounding normal cells, and high tumor resistance to radiation. Among various radiotherapy methods, boron neutron capture therapy (BNCT) has emerged as a principal approach to improve the therapeutic ratio of malignancies and reduce lethality to surrounding normal tissue, but it remains deficient in terms of insufficient boron accumulation as well as short retention time, which limits the curative effect. Recently, a series of radiosensitizers that can selectively accumulate in specific organelles of cancer cells have been developed to precisely target radiotherapy, thereby reducing side effects of normal tissue damage, overcoming radioresistance, and improving radiosensitivity. In this review, we mainly focus on the field of nanomedicine-based cancer radiotherapy and discuss the organelle-targeted radiosensitizers, specifically including nucleus, mitochondria, endoplasmic reticulum and lysosomes. Furthermore, the organelle-targeted boron carriers used in BNCT are particularly presented. Through demonstrating recent developments in organelle-targeted radiosensitization, we hope to provide insight into the design of organelle-targeted radiosensitizers for clinical cancer treatment.展开更多
Without assumptions made on motion states of missile and target, an extended differential geometric guidance law is derived. Through introducing a line of sight rotation coordinate system, the derivation is simplified...Without assumptions made on motion states of missile and target, an extended differential geometric guidance law is derived. Through introducing a line of sight rotation coordinate system, the derivation is simplified and has more explicit physical significances. The extended law is theoretically applicable to any engagement scenarios. Then, on basis of the extended law, a modified one is designed without the requirement of target acceleration and an approach is proposed to determining the applied direction of commanded missile acceleration. Qualitative analysis is carried out to study the capture performance and a criterion for capture is given. Simulation results indicate the two laws are effective and make up the deficiency that pure proportional navigation suitable for endoatmospheric interceptions cannot deal with high-speed maneuvering targets. Furthermore, the correctness of the criterion is validated.展开更多
The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on ...The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on the base and on the arms are distributed on the opposite side of the target.Otherwise,large forces will be needed.To cope with this problem,an uneven-oriented distribution union criterion is proposed.The union criterion contains a virtual symmetrical criterion and a geometry criterion.The virtual symmetrical contact point criterion is derived from the proof of the force closure principle using computational geometry to ensure a stable grasp,and the geometry criterion is calculated by the volume of the minimum polyhedron formed by the contact points to get a wide-range distribution.To further accelerate the optimization rate and enhance the global search ability,a line array modeling method and a continuous-discrete global search algorithm are proposed.The line array modeling method reduces the workload of calculating the descent direction and the gradient available,while the continuous-discrete global search algorithm reducing the optimization dimension.Then a highly efficient grasping is achieved and the corresponding contact point is calculated.Finally,an exhaustive verification is conducted to numerically analyze the disturbance resistance ability,and simulation results demonstrate the effectiveness of the proposed algorithms.展开更多
基金This research is supported by the National Key Research and Development Program of China(2016YFD0101803 and 2017YFD0101201)the Central Public-interest Scientific Institution Basal Research Fund(Y2020PT20)+4 种基金the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciences(CAAS)(CAAS-XTCX2016009)the Key Research Area and Development Program of Guangdong Province(2018B020202008)the Shijiazhuang Science and Technology Incubation Program(191540089A)the Hebei Innovation Capability Enhancement Project(19962911D)Research activities at CIMMYT were supported by the Bill and Melinda Gates Foundation and the CGIAR Research Program MAIZE.
文摘Genotyping platforms,as critical supports for genomics,genetics,and molecular breeding,have been well implemented at national institutions/universities in developed countries and multinational seed companies that possess high-throughput,automatic,large-scale,and shared facilities.In this study,we integrated an improved genotyping by target sequencing(GBTS)system with capture-in-solution(liquid chip)technology to develop a multiple single-nucleotide polymorphism(mSNP)approach in which mSNPs can be captured from a single amplicon.From one 40K maize mSNP panel,we developed three types of markers(40K mSNPs,251K SNPs,and 690K haplotypes),and generated multiple panels with various marker densities(1K–40K mSNPs)by sequencing at different depths.Comparative genetic diversity analysis was performed with genic versus intergenic markers and di-allelic SNPs versus non-typical SNPs.Compared with the one-amplicon-one-SNP system,mSNPs and within-mSNP haplotypes are more powerful for genetic diversity detection,linkage disequilibrium decay analysis,and genome-wide association studies.The technologies,protocols,and application scenarios developed for maize in this study will serve as a model for the development of mSNP arrays and highly efficient GBTS systems in animals,plants,and microorganisms.
基金supported by the National Natural Science Foundation of China(31871653 to K.L.,31830067 to J.L.)the Talent Project of Chongqing Natural Science Foundation(cstc2021ycjhbgzxm0033 to K.L.)Germplasm Creation Special Program of Southwest University.
文摘Rapeseed(Brassica napus)is an oil crop grown worldwide,making it a key plant species in molecular breeding research.However,the complexity of its polyploid genome increases sequencing costs and reduces sequencing accuracy.Target capture coupled with high-throughput sequencing is an efficient approach for detecting genetic variation at genomic regions or loci of interest.In this study,588 resequenced accessions of rapeseed were used to develop a target capture sequencing SNP genotyping platform named BnaPan50T.The platform comprised 54,765,with 54,058 resequenced markers from the pan-genome,and 855 variant trait-associated markers for 12 agronomic traits.The capture quality of BnaPan50T was demonstrated well in 12 typical accessions.Compared with a conventional genotyping array,BnaPan50T has a high SNP density and a high proportion of SNPs in unique physical positions and in annotated functional genes,promising wide application.Target capture sequencing and wholegenome resequencing in 90 doubled-haploid lines yielded 60%specificity,78%uniformity within tenfold coverage range,and 93%genotyping accuracy for the platform.BnaPan50T was used to construct a genetic map for quantitative trait loci(QTL)mapping,identify 21 unique QTL,and predict several candidate genes for yield-related traits in multiple environments.A set of 132 core SNP loci was selected from BnaPan50T to construct DNA fingerprints and germplasm identification resources.This study provides genomics resources to support target capture sequencing,genetic analysis and genomic breeding of rapeseed.
基金supported by the National Natural Science Foundation of China(No.82172186)the Zhejiang Provincial Natural Science Foundation of China(No.LY21H160030)+1 种基金the National Natural Science Foundation of China(No.82373206,No.82073332)the National Key Research and Development Program of China(No.2022YFE0107800).
文摘Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation energy deposition, severe damage to surrounding normal cells, and high tumor resistance to radiation. Among various radiotherapy methods, boron neutron capture therapy (BNCT) has emerged as a principal approach to improve the therapeutic ratio of malignancies and reduce lethality to surrounding normal tissue, but it remains deficient in terms of insufficient boron accumulation as well as short retention time, which limits the curative effect. Recently, a series of radiosensitizers that can selectively accumulate in specific organelles of cancer cells have been developed to precisely target radiotherapy, thereby reducing side effects of normal tissue damage, overcoming radioresistance, and improving radiosensitivity. In this review, we mainly focus on the field of nanomedicine-based cancer radiotherapy and discuss the organelle-targeted radiosensitizers, specifically including nucleus, mitochondria, endoplasmic reticulum and lysosomes. Furthermore, the organelle-targeted boron carriers used in BNCT are particularly presented. Through demonstrating recent developments in organelle-targeted radiosensitization, we hope to provide insight into the design of organelle-targeted radiosensitizers for clinical cancer treatment.
文摘Without assumptions made on motion states of missile and target, an extended differential geometric guidance law is derived. Through introducing a line of sight rotation coordinate system, the derivation is simplified and has more explicit physical significances. The extended law is theoretically applicable to any engagement scenarios. Then, on basis of the extended law, a modified one is designed without the requirement of target acceleration and an approach is proposed to determining the applied direction of commanded missile acceleration. Qualitative analysis is carried out to study the capture performance and a criterion for capture is given. Simulation results indicate the two laws are effective and make up the deficiency that pure proportional navigation suitable for endoatmospheric interceptions cannot deal with high-speed maneuvering targets. Furthermore, the correctness of the criterion is validated.
基金supported by the National Natural Science Foundation of China(Nos.62003115,11972130)Shenzhen Natural Science Fund(the Stable Support Plan Program GXWD20201230155427003-20200821170719001).
文摘The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on the base and on the arms are distributed on the opposite side of the target.Otherwise,large forces will be needed.To cope with this problem,an uneven-oriented distribution union criterion is proposed.The union criterion contains a virtual symmetrical criterion and a geometry criterion.The virtual symmetrical contact point criterion is derived from the proof of the force closure principle using computational geometry to ensure a stable grasp,and the geometry criterion is calculated by the volume of the minimum polyhedron formed by the contact points to get a wide-range distribution.To further accelerate the optimization rate and enhance the global search ability,a line array modeling method and a continuous-discrete global search algorithm are proposed.The line array modeling method reduces the workload of calculating the descent direction and the gradient available,while the continuous-discrete global search algorithm reducing the optimization dimension.Then a highly efficient grasping is achieved and the corresponding contact point is calculated.Finally,an exhaustive verification is conducted to numerically analyze the disturbance resistance ability,and simulation results demonstrate the effectiveness of the proposed algorithms.