【目的】寻找可以调控孔道尺寸的催化剂材料,以实现对焦油的有效脱除,解决生物质气化过程中的瓶颈问题。【方法】首先以具有多孔结构的聚多巴胺碳材料作为载体,采用水蒸气活化聚多巴胺碳材料和浸渍法负载金属等手段,制备载铁碳基焦油裂...【目的】寻找可以调控孔道尺寸的催化剂材料,以实现对焦油的有效脱除,解决生物质气化过程中的瓶颈问题。【方法】首先以具有多孔结构的聚多巴胺碳材料作为载体,采用水蒸气活化聚多巴胺碳材料和浸渍法负载金属等手段,制备载铁碳基焦油裂解催化剂;然后通过扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscope,TEM)、全自动物理吸附仪(brunner emmett teller,BET)、傅里叶红外光谱仪(Fourier transform infrared spectroscopy,FTIR)等仪器对样品的物理化学性质进行表征;最后采用甲苯作为焦油模型验证材料的催化效果。【结果】活化温度的提高和活化时间的增加可以有效增大材料的比表面积和孔体积,而改变活化气氛中的水蒸气体积分数对材料的比表面积和孔体积影响不大;负载铁的聚多巴胺碳基催化剂的比表面积和孔体积,随着负载铁浸渍液的硝酸铁质量分数的升高先增大后降低,它的甲苯脱除效率也是如此。【结论】本研究结果可为焦油裂解催化剂的研究提供理论指导和技术创新参考。展开更多
Tar removal is a bottleneck in the smooth commercialization of biomass gasification technology. Based on introducing adsorption process into Quench Coupled with ABsorption Technology(QCABT) previously proposed by the ...Tar removal is a bottleneck in the smooth commercialization of biomass gasification technology. Based on introducing adsorption process into Quench Coupled with ABsorption Technology(QCABT) previously proposed by the author’s group, Quench Coupled with ADsorption Technology(QCADT) has been developed to narrow this gap. Additionally, benzene and naphthalene, which are more similar to the real tar for containing aromatic ring structures, were adopted as light and heavy simulated tar, respectively. Also their removal behavior by QCADT was investigated. The results show that the removal mechanism of QCADT is similar to that of QCABT, except for the higher overall tar removal rate due to adsorption effect. Adsorbents with both micro-and narrow mesopores exhibit a better benzene removal performance, while narrow mesopores play dominant roles in naphthalene removal. Penetration adsorption loading of benzene and naphthalene on AC-1 can reach0.38 g·g^-1 and 0.34 g·g^-1, respectively. The sawdust hardly has any tar removal effect. Combined micro-and meso-pores, will benefit both deep tar removal and large adsorption rate, providing a high tar removal efficiency.展开更多
Sulphonated nano-structured micro-porous ion exchange polymers, known as sulphonated PolyHIPE Polymers (s-PHPs) were used in syngas cleaning to investigate their impact on tar composition, concentration and dew poin...Sulphonated nano-structured micro-porous ion exchange polymers, known as sulphonated PolyHIPE Polymers (s-PHPs) were used in syngas cleaning to investigate their impact on tar composition, concentration and dew point depression during the gasification of fuel cane bagasse as a model biomass. The results showed that the s-PHPs used as a secondary syngas treatment system, was highly effective at adsorbing and reducing the concentration of all class of tars in syngas by 95%-80% which resulted in tar dew point depression from 90 ~C to 73 ~C. It was shown that tars underwent chemical reactions within s-PHPs, indicating that tar diffusion from syngas was driven by chemical potential. It was also observed that s-PHPs also captured ash forming elements from syngas. The use of s-PHPs in gasification as well as in an integrated thermochemical biorefinery technology is discussed since the tar loaded s-PHPs can be used as natural herbicides in the form of soil additives to enhance the biomass growth and crop yield.展开更多
文摘【目的】寻找可以调控孔道尺寸的催化剂材料,以实现对焦油的有效脱除,解决生物质气化过程中的瓶颈问题。【方法】首先以具有多孔结构的聚多巴胺碳材料作为载体,采用水蒸气活化聚多巴胺碳材料和浸渍法负载金属等手段,制备载铁碳基焦油裂解催化剂;然后通过扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscope,TEM)、全自动物理吸附仪(brunner emmett teller,BET)、傅里叶红外光谱仪(Fourier transform infrared spectroscopy,FTIR)等仪器对样品的物理化学性质进行表征;最后采用甲苯作为焦油模型验证材料的催化效果。【结果】活化温度的提高和活化时间的增加可以有效增大材料的比表面积和孔体积,而改变活化气氛中的水蒸气体积分数对材料的比表面积和孔体积影响不大;负载铁的聚多巴胺碳基催化剂的比表面积和孔体积,随着负载铁浸渍液的硝酸铁质量分数的升高先增大后降低,它的甲苯脱除效率也是如此。【结论】本研究结果可为焦油裂解催化剂的研究提供理论指导和技术创新参考。
基金Supported by the Six Talent Peaks Project in Jiangsu Province(2015-ZBZ-015)the top-notch academic programs project of Jiangsu Higher Education Institutions(PPZY2015A022)the Natonal Key Reasearch and Development Program of China(2018YFB1502900,2018YFB1502903).
文摘Tar removal is a bottleneck in the smooth commercialization of biomass gasification technology. Based on introducing adsorption process into Quench Coupled with ABsorption Technology(QCABT) previously proposed by the author’s group, Quench Coupled with ADsorption Technology(QCADT) has been developed to narrow this gap. Additionally, benzene and naphthalene, which are more similar to the real tar for containing aromatic ring structures, were adopted as light and heavy simulated tar, respectively. Also their removal behavior by QCADT was investigated. The results show that the removal mechanism of QCADT is similar to that of QCABT, except for the higher overall tar removal rate due to adsorption effect. Adsorbents with both micro-and narrow mesopores exhibit a better benzene removal performance, while narrow mesopores play dominant roles in naphthalene removal. Penetration adsorption loading of benzene and naphthalene on AC-1 can reach0.38 g·g^-1 and 0.34 g·g^-1, respectively. The sawdust hardly has any tar removal effect. Combined micro-and meso-pores, will benefit both deep tar removal and large adsorption rate, providing a high tar removal efficiency.
基金supported by the EU FP7 Integrated Project(COPIRIDE)Andrea Jordan was supported for her PhD studies by a National Development Scholarship from the Government of Barbados+1 种基金a research grant from the Barbados Light and Power Company Limited which also supplied fuel cane bagasse for the experimentsAbdulaziz Mohamed was supported for his PhD studies by the Libyan Ministry of Higher Education and Scientific Research
文摘Sulphonated nano-structured micro-porous ion exchange polymers, known as sulphonated PolyHIPE Polymers (s-PHPs) were used in syngas cleaning to investigate their impact on tar composition, concentration and dew point depression during the gasification of fuel cane bagasse as a model biomass. The results showed that the s-PHPs used as a secondary syngas treatment system, was highly effective at adsorbing and reducing the concentration of all class of tars in syngas by 95%-80% which resulted in tar dew point depression from 90 ~C to 73 ~C. It was shown that tars underwent chemical reactions within s-PHPs, indicating that tar diffusion from syngas was driven by chemical potential. It was also observed that s-PHPs also captured ash forming elements from syngas. The use of s-PHPs in gasification as well as in an integrated thermochemical biorefinery technology is discussed since the tar loaded s-PHPs can be used as natural herbicides in the form of soil additives to enhance the biomass growth and crop yield.