Elastic critical buckling load of a column depends on various parameters,such as boundary conditions,material,and crosssection geometry.The main purpose of this work is to present a new method for investigating the bu...Elastic critical buckling load of a column depends on various parameters,such as boundary conditions,material,and crosssection geometry.The main purpose of this work is to present a new method for investigating the buckling load of tapered columns subjected to axial force.The proposed method is based on modified buckling mode shape of tapered structure and perturbation theory.The mode shape of the damaged structure can be expressed as a linear combination of mode shapes of the intact structure.Variations in length in piecewise form can be positive or negative.The method can be used for single-span and continuous columns.Comparison of results with those of finite element and Timoshenko methods shows the high accuracy and efficiency of the proposed method for detecting buckling load.展开更多
The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Ove...The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Overall gas holdup increases with an increase in gas velocity and a decrease in solid concentration or static slurry height. Axial solid holdup becomes more uniform with increasing gas velocity, while axial gas holdup decreases from the bottom to the top. Both dry and wet pressure drops across the gas distributor increase with an increase in superficial gas velocity.展开更多
文摘Elastic critical buckling load of a column depends on various parameters,such as boundary conditions,material,and crosssection geometry.The main purpose of this work is to present a new method for investigating the buckling load of tapered columns subjected to axial force.The proposed method is based on modified buckling mode shape of tapered structure and perturbation theory.The mode shape of the damaged structure can be expressed as a linear combination of mode shapes of the intact structure.Variations in length in piecewise form can be positive or negative.The method can be used for single-span and continuous columns.Comparison of results with those of finite element and Timoshenko methods shows the high accuracy and efficiency of the proposed method for detecting buckling load.
文摘The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Overall gas holdup increases with an increase in gas velocity and a decrease in solid concentration or static slurry height. Axial solid holdup becomes more uniform with increasing gas velocity, while axial gas holdup decreases from the bottom to the top. Both dry and wet pressure drops across the gas distributor increase with an increase in superficial gas velocity.